• 제목/요약/키워드: CB1 receptor

검색결과 24건 처리시간 0.026초

Dysregulation of Cannabinoid CB1 Receptor Expression in Subcutaneous Adipocytes of Obese Individuals

  • Lee, Yong-Ho;Tharp, William G.;Dixon, Anne E.;Spaulding, Laurie;Trost, Susanne;Nair, Saraswathy;Permana, Paska A.;Pratley, Ridhard E.
    • Animal cells and systems
    • /
    • 제13권4호
    • /
    • pp.371-379
    • /
    • 2009
  • The endocannabinoid system (ECS) plays a key role in the regulation of appetite, body weight and metabolism. We undertook the present study to further clarify the regulation of the cannabinoid CB1 receptor (CB1, CNR1) in human adipose tissue in obesity. CB1 receptor mRNA expression was ~1.6-fold (p<0.004) and 1.9-fold higher (P<0.05) in subcutaneous adipocytes from obese compared to non-obese subjects in microarray and quantitative real-time PCR studies, respectively. Higher CB1 receptor mRNA expression levels in both adipose tissue (~1.2 fold, P<0.05) and adipocytes (~2 fold, P<0.01) were observed in samples from visceral compared to subcutaneous depots collected from 22 obese individuals. Immunofluorescence confocal microscopy demonstrated the presence of CB1 receptor on adipocytes and also adipose tissue macrophages. These data indicate that adipocyte CB1 receptor is up-regulated in human obesity and visceral adipose tissue and also suggest a potential role for the ECS in modulating immune/inflammation as well as fat metabolism in adipose tissue.

SR144528 as Inverse Agonist of CB2 Cannabinoid Receptor

  • M.H. Rhee;Kim, S.K.
    • 한국수정란이식학회:학술대회논문집
    • /
    • 한국수정란이식학회 2002년도 국제심포지엄
    • /
    • pp.96-96
    • /
    • 2002
  • We examined the role of SR 144528 (N-[-(1S-endo-1,3,,3-trimethyl-bicycle[2, 2, 1 ] heptan-2-y1]-5-(-4-chloro-3-mothyl-phenyl)-(4-methylbenzyl)-pyrazole-3- carboxamide) in the modulation of certain AC isoforms in transiently transfected COS-7 cells. We found that CB2 in COS cells has a constitutive activity, and thus leading to inhibition of AC-V activity even in the absence of agonist. In addition, this constitutive modulation of AC is reversed by SR144528. It is now well established that several G protein-coupled receptors can signal without agonist stimulation(constitutive receptors). Inverse agonists have been shown to inhibit the activity of such constitutive G protein-coupled receptor signaling. Agonist activation of the G$\_$i/o/-coupled peripheral cannabinoid receptor CB2 normally inhibits adenylyl cyclase type V and stimulates adenylyl cyclase type II. Using transfected COS cells, we show here that application of SR144528, an inverse agonist of CB2, leads to a reverse action (stimulation of adenylyl cyclase V and inhibition of adenylyl cyclase II). This inverse agonism of SR144528 is dependent on the temperature, as well as on the concentration of the cDNA of CB2 transfected. Pertussis toxin blocked the regulation of adenylyl cyclase activity by SR 144528.

  • PDF

A Cannabinoid Receptor Agonist N-Arachidonoyl Dopamine Inhibits Adipocyte Differentiation in Human Mesenchymal Stem Cells

  • Ahn, Seyeon;Yi, Sodam;Seo, Won Jong;Lee, Myeong Jung;Song, Young Keun;Baek, Seung Yong;Yu, Jinha;Hong, Soo Hyun;Lee, Jinyoung;Shin, Dong Wook;Jeong, Lak Shin;Noh, Minsoo
    • Biomolecules & Therapeutics
    • /
    • 제23권3호
    • /
    • pp.218-224
    • /
    • 2015
  • Endocannabinoids can affect multiple cellular targets, such as cannabinoid (CB) receptors, transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and peroxisome proliferator-activated receptor ${\gamma}$($PPAR{\gamma}$). The stimuli to induce adipocyte differentiation in hBM-MSCs increase the gene transcription of the $CB_1$ receptor, TRPV1 and $PPAR{\gamma}$. In this study, the effects of three endocannabinoids, N-arachidonoyl ethanolamine (AEA), N-arachidonoyl dopamine (NADA) and 2-arachidonoyl glycerol (2-AG), on adipogenesis in hBM-MSCs were evaluated. The adipocyte differentiation was promoted by AEA whereas inhibited by NADA. No change was observed by the treatment of non-cytotoxic concentrations of 2-AG. The difference between AEA and NADA in the regulation of adipogenesis is associated with their effects on $PPAR{\gamma}$ transactivation. AEA can directly activate $PPAR{\gamma}$. The effect of AEA on $PPAR{\gamma}$ in hBM-MSCs may prevail over that on the $CB_1$ receptor mediated signal transduction, giving rise to the AEA-induced promotion of adipogenesis. In contrast, NADA had no effect on the $PPAR{\gamma}$ activity in the $PPAR{\gamma}$ transactivation assay. The inhibitory effect of NADA on adipogenesis in hBM-MSCs was reversed not by capsazepine, a TRPV1 antagonist, but by rimonabant, a $CB_1$ antagonist/inverse agonist. Rimonabant by itself promoted adipogenesis in hBM-MSCs, which may be interpreted as the result of the inverse agonism of the $CB_1$ receptor. This result suggests that the constantly active $CB_1$ receptor may contribute to suppress the adipocyte differentiation of hBM-MSCs. Therefore, the selective $CB_1$ agonists that are unable to affect cellular $PPAR{\gamma}$ activity inhibit adipogenesis in hBM-MSCs.

Structure-Activity Relationship and Functional Evaluation of Cannabinoid Type-1 Receptor

  • Shujie Wang;Xinru Tian;Suresh Paudel;Sungho Ghil;Choon-Gon Jang;Kyeong-Man Kim
    • Biomolecules & Therapeutics
    • /
    • 제32권4호
    • /
    • pp.442-450
    • /
    • 2024
  • The type-1 cannabinoid receptor (CB1R) is a potential therapeutic target in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Owing to their structural diversity, it is not easy to derive general structure-activity relationships (SARs) for CB1R ligands. In this study, CB1R ligands were classified into six structural families, and the corresponding SAR was determined for their affinities for CB1R. In addition, we determined their functional activities for the activation of extracellular signal-regulated kinases (ERKs). Among derivatives of indol-3-yl-methanone, the highest ligand affinity was observed when a pentyl and a naphthalenyl group were attached to the N1 position of the indole ring and the carbon site of the methanone moiety, respectively. In the case of adamantane indazole-3-carboxamide derivatives, the presence of fluorine in the pentyl group, the substituent at the N1 position of the indazole ring, strongly increased the affinity for CB1R. For (naphthalen-1-yl) methanone derivatives, the presence of 4-alkoxynaphthalene in the methanone moiety was more beneficial for the affinity to CB1R than that of a heterocyclic ring. The functional activities of the tested compounds, evaluated through ERK assay, were correlated with their affinity for CB1R, suggesting their agonistic nature. In conclusion, this study provides valuable insight for designing novel ligands for CB1R, which can be used to control psychiatric disorders and drug abuse.

Receptor Binding Affinities of Synthetic Cannabinoids Determined by Non-Isotopic Receptor Binding Assay

  • Cha, Hye Jin;Song, Yun Jeong;Lee, Da Eun;Kim, Young-Hoon;Shin, Jisoon;Jang, Choon-Gon;Suh, Soo Kyung;Kim, Sung Jin;Yun, Jaesuk
    • Toxicological Research
    • /
    • 제35권1호
    • /
    • pp.37-44
    • /
    • 2019
  • A major predictor of the efficacy of natural or synthetic cannabinoids is their binding affinity to the cannabinoid type I receptor ($CB_1$) in the central nervous system, as the main psychological effects of cannabinoids are achieved via binding to this receptor. Conventionally, receptor binding assays have been performed using isotopes, which are inconvenient owing to the effects of radioactivity. In the present study, the binding affinities of five cannabinoids for purified $CB_1$ were measured using a surface plasmon resonance (SPR) technique as a putative non-isotopic receptor binding assay. Results were compared with those of a radio-isotope-labeled receptor binding assay. The representative natural cannabinoid ${\Delta}^9$-tetrahydrocannabinol and four synthetic cannabinoids, JWH-015, JWH-210, RCS-4, and JWH-250, were assessed using both the SPR biosensor assay and the conventional isotopic receptor binding assay. The binding affinities of the test substances to $CB_1$ were determined to be (from highest to lowest) $9.52{\times}10^{-3}M$ (JWH-210), $6.54{\times}10^{-12}M$ (JWH-250), $1.56{\times}10^{-11}M$ (${\Delta}^9$-tetrahydrocannabinol), $2.75{\times}10^{-11}M$ (RCS-4), and $6.80{\times}10^{-11}M$ (JWH-015) using the non-isotopic method. Using the conventional isotopic receptor binding assay, the same order of affinities was observed. In conclusion, our results support the use of kinetic analysis via SPR in place of the isotopic receptor binding assay. To replace the receptor binding affinity assay with SPR techniques in routine assays, further studies for method validation will be needed in the future.

아토피피부염에서 갈근황금황련탕 추출물의 ECS 조절을 통한 염증 완화 효과 (Inflammation Relief Effect through ECS Control of Galgeunhwanggeumhwangryeon-tang Extract in Atopic Dermatitis)

  • 김기봉;안상현
    • 대한한방소아과학회지
    • /
    • 제35권4호
    • /
    • pp.48-55
    • /
    • 2021
  • Objective The purpose of this study was to confirm the effects of Galgeunhwanggeumhwangryeon-tang in reducing inflammation through the endocannabinoid system (ECS) control in atopic dermatitis. Methods 8-week-old Balb/C mice were divided into 4 groups: contorl group (Ctrl), lipid barrier elimination group (ADE), palmitoylethanolamide treated group after lipid barrier elimination (PEA), and Galgeunhwanggeumhwangryeon-tang applied group after lipid barrier elimination (GGRT). After inducing atopic dermatitis, cannabinoid receptor (CB) 1, CB2, CD68, phosphorylated inhibitor kappa B (p-IκB), inducible nitric oxide synthase (iNOS), substance P and serotonin were observed to confirm the regulation of the ECS, macrophage activity and mast cell activity. Results CB1 and CB2 showed higher positive reactions in the GGRT than in the LBE and PEA. CD68, p-IκB and iNOS showed higher positive reaction in the LBE, PEA and GGRT than in the Ctrl, but the increase in the positive reaction was lower in the GGRT compared to the LBE and PEA. Substance P and serotonin showed higher positive reaction in the LBE, PEA and GGRT than in the Ctrl, but the increase in the positive reaction was lower in the GGRT compared to the LBE and PEA. Conclusions The effects of Galgeunhwanggeumhwangryeon-tang were confirmed though the regulation of the ECS, macrophage activity and mast cell activity.

Characterization of hypotensive and vasorelaxant effects of PHAR-DBH-Me a new cannabinoid receptor agonist

  • Lopez-Canales, Oscar Alberto;Pavon, Natalia;Ubaldo-Reyes, Laura Matilde;Juarez-Oropeza, Marco Antonio;Torres-Duran, Patricia Victoria;Regla, Ignacio;Paredes-Carbajal, Maria Cristina
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권2호
    • /
    • pp.77-86
    • /
    • 2022
  • The effect of PHAR-DBH-Me, a cannabinoid receptor agonist, on different cardiovascular responses in adult male rats was analyzed. The blood pressure was measured directly and indirectly. The coronary flow was measured by Langendorff preparation, and vasomotor responses induced by PHAR-DBH-Me in aortic rings precontracted with phenylephrine (PHEN) were analyzed. The intravenous injection of the compound PHAR-DBH-Me (0.018-185 ㎍/kg) resulted in decreased blood pressure; maximum effect was observed at the dose of 1,850 ㎍/kg. A concentrationdependent increase in the coronary flow was observed in a Langendorff preparation. In the aortic rings, with and without endothelium, pre-contracted with PHEN (10-6 M), the addition of PHAR-DBH-Me to the superfusion solution (10-12-10-5 M), produced a vasodilator response, which depends on the concentration and presence of the endothelium. L-NAME inhibited these effects. Addition of CB1 receptor antagonist (AM 251) did not modify the response, while CB2 receptor antagonist (AM630) decreased the potency of relaxation elicited by PHAR-DBH-Me. Indomethacin shifted the curve concentration-response to the left and produced an increase in the magnitude of the maximum endothelium dependent response to this compound. The maximum effect of PHAR-DBH-Me was observed with the concentration of 10-5 M. These results show that PHAR-DBH-Me has a concentration-dependent and endothelium-dependent vasodilator effect through CB2 receptor. This vasodilation is probably mediated by the synthesis/release of NO. On the other hand, it is suggested that PHAR-DBH-Me also induces the release of a vasoconstrictor prostanoid.