• Title/Summary/Keyword: CANDU6

Search Result 143, Processing Time 0.036 seconds

Incremental Cross Sections for CANDU-PHWR Core Analysis (CANDU-PHWR의 증분단면적 계산방법에 대한 연구)

  • Hang Bok Choi;Seong Yun Kim;Chang Hyun Chung
    • Nuclear Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.98-104
    • /
    • 1985
  • A number of reactivity devices are distributed in a CANDU-PHWR core to control the power distribution and excess reactivity. The effects of these devices are represented by incremental cross sections in core analysis. The incremental cross sections are generated by the SUPERCELL code using the two-group constant set calculated by the lattice code, WIMS. The incremental cross sections are then assessed for adjusters and zone controller by core simulation. Reactivity worth and channel powers are compared to the reference values. The deviation of reactivity worth and the maximum channel power are less than 0.97% and 0.6%, respectively, for the initial and equilibrium core.

  • PDF

Thermal Analysis of a Retrievable CANDU Spent Fuel Disposal Tunnel (회수 가능 CANDU 사용후핵연료 처분터널에 대한 열 해석)

  • Cha, Jeong-Hun;Lee, Jong-Youl;Choi, Heui-Joo;Cho, Dong-Keun;Kim, Sang-Nyung;Youn, Bum-Soo;Ji, Joon-Suk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.2
    • /
    • pp.119-128
    • /
    • 2008
  • Thermal assessment of a new CANDU spent fuel disposal system, which improves the retrievability of the spent fuel and enhances the densification factor compared with the Korean Reference disposal System, is carried out in this study. The canisters for CANDU spent fuels are stored for long term and cooled by natural convection in the proposed disposal system for the retrievability. The steady state thermal analyses for proposed CANDU disposal system are carried out with the ANSYS 10.0 CFX code. The thermal analyses are performed through two steps. At the first step, the sensitivity of the disposal tunnel spacing is analysed. The differences of maximum temperatures by several tunnel spacings are calculated at three points in the disposal tunnel. The result shows that the differences of the temperature at the three points are almost negligible because 99% of the decay heat is removed by natural convection. At the second procedure, 60m tunnel spacing with a ventilation system instead of natural convection is considered. The result is applied to the calculation of the canister surface temperature in disposal tunnel as boundary conditions. Consequently, the average and the maximum surface temperature of disposal canisters are $79.9^{\circ}C$ and $119^{\circ}C$, respectively. The inner maximum temperature of a basket in the disposal canister is calculated as $140.9^{\circ}C$. The maximum temperature of the basket meets the thermal requirement for the CANDU spent fuel cladding.

  • PDF

A Numerical Model for Predicting the Radial Power Profile in CANDU-PHWR Fuel Pellet (CANDU-PHWR 핵연료 소결체의 반경방향 출력분포 수치모형)

  • Woan Hwang;Suk, Ho-Chun;Jae, Won-Mok
    • Nuclear Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.444-455
    • /
    • 1991
  • An accurate and fast running NEDAR model for calculating radial power profile throughout fuel life in both solid and annular pellets for existing and advanced CANDU-PHWR-fuel was developed in this work. This model contains resultant flux depression equations and neutron depression data tables which have been developed for CANDU-PHWR fuel of pellet with the diameter 8.0 to 19.5 mm and enrichment 0.71-6.0 wt % U-235, over a bumup range of 0 to 840 MWh /kgU (35000 MWD/T). In order to obtain the neutron flux distribution in the fuel pellet, the CE-HAMMER physics code was run for a neutron flux spectrum appropriate to a CANDU-PHWR to give predictions of radial power profile for several ranges of fuel design parameters. The results, which were calculated by the CE-HAMMER physics code, were fitted to an equation which is solved in terms of Bessel and exponential functions in order to obtain the parameters, $textsc{k}$, $\beta$ and λ in the resultant equation. The present NEDAR model produce a radial profile which, when normalized to unity at the pellet surface, is slightly higher than the profile of the original ELESIM data table. The predictions of the fission gas release by KAFEPA-NEDAR are in slightly better agreement with the experiments than those of ELESIM. The NEDAR model described in this study has been shown to provide an effective, reliable, and accurate method for determining radial power profiles in CANDU-PHWR fuel rods without incurring a significant increase in computing time.

  • PDF

THERMALHYDRAULIC EVALUATIONS FOR A CANFLEX BUNDLE WITH NATURAL OR RECYCLED URANIUM FUEL IN THE UNCREPT AND CREPT CHANNELS OF A CANDU-6 REACTOR

  • Jun, Ji-Su
    • Nuclear Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.479-490
    • /
    • 2005
  • The thermalhydraulic performance of a CANDU-6 reactor loaded with various CANFLEX fuel bundles is evaluated by the NUCIRC code, which is incorporated with recent models of pressure drop and critical heat flux (CHF) predictions based on high-pressure steam-water tests for the CANFLEX bundle as well as a 37-element bundle. The distributions of channel flow rate, channel exit quality, critical channel power (CCP), and critical power ratio (CPR) for the CANFLEX bundles (with natural or recycled uranium fuel) in the CANDU-6 reactor fuel channel are calculated by the code. The effects of axial and radial heat flux on CCP are evaluated by assuming that the recycled uranium fuel (CANFLEX-RU) has the same geometric data as the natural uranium fuel bundle (CANFLEX-NU), but a different power distribution due to different fuel composition and refueling scheme. In addition, the effects of pressure tube creep and bearing-pad height are examined by comparing various results of uncrept, and $3.3\%\;and\;5.1\%$ crept channels loaded with CANFLEX bundles with 1.4 mm or 1.7 mm high bearing-pads with those of the 37-element bundle. The distributions of the channel flow rate and CCP for the CANFLEX-NU or -RU bundle show a typical trend for a CANDU-6 reactor channel, and the CPRs are maintained above at least 1.444 (NU) or 1.455 (RU) in the uncrept channel. The enhanced CHF of the CANFLEX bundle (particularly with 1.7mm height bearing-pads) produces a higher thermal margin and considerably less sensitivity to CCP reduction due to the pressure tube creep than the 37-element bundle. The CCP enhancement due to the raised bearing-pads is estimated to be about $3\%\~5\%$ for the CANFLEX-NU and $2\%\~6\%$ for the CANFLEX-RU bundle, respectively.

Visualization and 3D Numerical Analysis of the Circulation Flow of the Neutron Moderator in a Heavy-Water Nuclear Reactor (가압중수형 원자로의 중성자 감속재 순환 유동가시화와 삼차원 전산해석)

  • Eom, Tae-Kwang;Lee, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.189-196
    • /
    • 2012
  • The heavy moderator acts as the ultimate heat-sink in an operating CANDU reactor. HUKINS has been developed to investigate moderator flow patterns. HUKINS consists of a 38.4-mm-thick cylindrical shell with a 0.95 m inner diameter and 88 sus-tubes that produce a total heat of 10 kW. A chemical visualization method was selected to estimate the occurrence of typical moderator flow patterns. Momentum-dominated flow, mixed flow, and buoyancy-dominated flow are detected under conditions of a heat load of 7.7 kW and input mass flow rates of 4, 7, and 11 L/min. The experimental results are similar to the results of a CFD simulation that consisted of approximately 1.9 million grids and was conducted using the k-${\varepsilon}$ turbulence model. Therefore, both the present experiments and simulations using HUKINS, a 1/8-scale model, represent all three important flow patterns expected in the real CANDU6 reference reactor. Thus, it has been demonstrated that HUKINS could be useful in the study of CANDU6 moderator circulation.

Physics Study of Canada Deuterium Uranium Lattice with Coolant Void Reactivity Analysis

  • Park, Jinsu;Lee, Hyunsuk;Tak, Taewoo;Shin, Ho Cheol;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.6-16
    • /
    • 2017
  • This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU)-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700) fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four factors and spectrum shifts. In the case of single bundle coolant voiding, the contribution of each of the four factors in the ACR-700 lattice is large in magnitude with opposite signs, and their summation becomes a negative reactivity effect in contrast to that of the CANDU-6 lattice. Unlike the coolant voiding in a single fuel bundle, the $2{\times}2$ checkerboard coolant voiding in the ACR-700 lattice shows a positive reactivity effect. The neutron current between the no-void and voided bundles, and the four factors of each bundle were analyzed to figure out the mechanism of the positive coolant void reactivity of the checkerboard voiding case. Through a sensitivity study of fuel enrichment, type of burnable absorber, and moderator to fuel volume ratio, a design strategy for the CANDU reactor was suggested in order to achieve a negative coolant void reactivity even for the checkerboard voiding case.