• Title/Summary/Keyword: CANDU-6 Reactor

Search Result 68, Processing Time 0.023 seconds

CURRENT STATUS OF INTEGRITY ASSESSMENT BY SIPPING SYSTEM OF SPENT FUEL BUNDLES IRRADIATED IN CANDU REACTOR

  • Park, Jong-Youl;Shim, Moon-Soo;Lee, Jong-Hyeon
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.875-882
    • /
    • 2014
  • In terms of safety and the efficient management of spent fuel storage, detecting failed fuel is one of the most important tasks in a CANada Deuterium Uranium (CANDU) reactor operation. It has been successfully demonstrated that in a CANDU reactor, on-power failed fuel detection and location systems, along with alarm area gamma monitors, can detect and locate defective and suspect fuel bundles before discharging them from the reactor to the spent fuel storage bay. In the reception bay, however, only visual inspection has been used to identify suspect bundles. Gaseous fission product and delayed neutron monitoring systems cannot precisely distinguish failed fuel elements from each fuel bundle. This study reports the use of a sipping system in a CANDU reactor for the integrity assessment of spent fuel bundles. The integrity assessment of spent fuel bundles using this sipping system has shown promise as a nondestructive test for detecting a defective fuel bundle in a CANDU reactor.

THE IMPACT OF POWER COEFFICIENT OF REACTIVITY ON CANDU 6 REACTORS

  • Kastanya, D.;Boyle, S.;Hopwood, J.;Park, Joo Hwan
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.573-580
    • /
    • 2013
  • The combined effects of reactivity coefficients, along with other core nuclear characteristics, determine reactor core behavior in normal operation and accident conditions. The Power Coefficient of Reactivity (PCR) is an aggregate indicator representing the change in reactor core reactivity per unit change in reactor power. It is an integral quantity which captures the contributions of the fuel temperature, coolant void, and coolant temperature reactivity feedbacks. All nuclear reactor designs provide a balance between their inherent nuclear characteristics and the engineered reactivity control features, to ensure that changes in reactivity under all operating conditions are maintained within a safe range. The $CANDU^{(R)}$ reactor design takes advantage of its inherent nuclear characteristics, namely a small magnitude of reactivity coefficients, minimal excess reactivity, and very long prompt neutron lifetime, to mitigate the demand on the engineered systems for controlling reactivity and responding to accidents. In particular, CANDU reactors have always taken advantage of the small value of the PCR associated with their design characteristics, such that the overall design and safety characteristics of the reactor are not sensitive to the value of the PCR. For other reactor design concepts a PCR which is both large and negative is an important aspect in the design of their engineered systems for controlling reactivity. It will be demonstrated that during Loss of Regulation Control (LORC) and Large Break Loss of Coolant Accident (LBLOCA) events, the impact of variations in power coefficient, including a hypothesized larger than estimated PCR, has no safety-significance for CANDU reactor design. Since the CANDU 6 PCR is small, variations in the range of values for PCR on the performance or safety of the reactor are not significant.

Neutronic study of utilization of discrete thorium-uranium fuel pins in CANDU-6 reactor

  • Deng, Nianbiao;Yu, Tao;Xie, Jinsen;Chen, Zhenping;Xie, Qin;Zhao, Pengcheng;Liu, Zijing;Zeng, Wenjie
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.377-383
    • /
    • 2019
  • Targeting at simulating the application of thorium-uranium (TU) fuel in the CANDU-6 reactor, this paper analyzes the process using the code DRAGON/DONJON where the discrete TU fuel pins are applied in the CANDU-6 reactor under the time-average equilibrium refueling. The results show that the coolant void reactivity of the assembly analyzed in this paper is lower than that of 37-element bundle cell with natural uranium and 37-element bundle cell with mixed TU fuel pins; that the max time-average channel/bundle power of the core meets the limits - less than 6700kW/860 kW; that the fuel conversion ratio is higher than that of the CANDU-6 reactor with natural uranium; and that the exit burnup increases to 13400 MWd/tU. Thus, the simulation in this paper with the fuel in the 37-element bundle cell using discrete TU fuel pins can be considered to be applied in CANDU-6 reactor with adequate modifications of the core structure and operating modes.

Effect of DUPIC Cycle on CANDU Reactor Safety Parameters

  • Mohamed, Nader M.A.;Badawi, Alya
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1109-1119
    • /
    • 2016
  • Although, the direct use of spent pressurized water reactor (PWR) fuel in CANda Deuterium Uranium (CANDU) reactors (DUPIC) cycle is still under investigation, DUPIC cycle is a promising method for uranium utilization improvement, for reduction of high level nuclear waste, and for high degree of proliferation resistance. This paper focuses on the effect of DUPIC cycle on CANDU reactor safety parameters. MCNP6 was used for lattice cell simulation of a typical 3,411 MWth PWR fueled by $UO_2$ enriched to 4.5w/o U-235 to calculate the spent fuel inventories after a burnup of 51.7 MWd/kgU. The code was also used to simulate the lattice cell of CANDU-6 reactor fueled with spent fuel after its fabrication into the standard 37-element fuel bundle. It is assumed a 5-year cooling time between the spent fuel discharges from the PWR to the loading into the CANDU-6. The simulation was carried out to calculate the burnup and the effect of DUPIC fuel on: (1) the power distribution amongst the fuel elements of the bundle; (2) the coolant void reactivity; and (3) the reactor point-kinetics parameters.

ANALYSES OF FLUID FLOW AND HEAT TRANSFER INSIDE CALANDRIA VESSEL OF CANDU-6 REACTOR USING CFD

  • YU SEON-OH;KIM MANWOONG;KIM HHO-JUNG
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.575-586
    • /
    • 2005
  • In a CANDU (CANada Deuterium Uranium) reactor, fuel channel integrity depends on the coolability of the moderator as an ultimate heat sink under transient conditions such as a loss of coolant accident (LOCA) with coincident loss of emergency core cooling (LOECC), as well as normal operating conditions. This study presents assessments of moderator thermal-hydraulic characteristics in the normal operating conditions and one transient condition for CANDU-6 reactors, using a general purpose three-dimensional computational fluid dynamics code. First, an optimized calculation scheme is obtained by many-sided comparisons of the predicted results with the related experimental data, and by evaluating the fluid flow and temperature distributions. Then, using the optimized scheme, analyses of real CANDU-6 in normal operating conditions and the transition condition have been performed. The present model successfully predicted the experimental results and also reasonably assessed the thermal-hydraulic characteristics of a real CANDU-6 with 380 fuel channels. A flow regime map with major parameters representing the flow pattern inside a calandria vessel has also proposed to be used as operational and/or regulatory guidelines.

Core Analysis during Transition from 37-Element Fuel to CANFLEX-NU Fuel in CANDU 6

  • Jeong, Chan-Joon;Suk, Ho-Chun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.169-174
    • /
    • 1998
  • An 1200-day time-dependent fuel-management for the transition from 37-element fuel to CANFLEX-NU fuel in a CANDU 6 reactor has been simulated to show the compatibility of the CANFLEX-NU fuel with the reactor operation. The simulation calculation were carried out with the RFSP code, provided by cell averaged hel properties obtained from the POWDERPUFS-V code. The refueling scheme for both fuels was an eight bundle shift art a time. The simulation results show that the maximum channel and bundle powers were maintained below the licence limit of the CANDU 6. This indicates that the CANFLEX-NU fuel bundle is compatible with the CANDU 6 reactor operation during the transition period.

  • PDF

Fuel Management Simulation for CANFLEX-RU in CANDU 6

  • Jeong, Chang-Joon;Suk, Ho-Chun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.147-151
    • /
    • 1997
  • Fuel management simulation have been performed for CANFLEX-0.9% RU fuel in the CANDU 6 reactor. In this study, the bi-directional 4-bundle shift fuelling scheme was assumed The lattice cell and time-average calculation were carried out. The refuelling simulation calculations were performed for 600 full power days. Time-averaged results show good axial power profile with the CANFLEX-RU fuel. During the simulation period, the maximum channel and bundle power were maintained below the licensing limit of CANDU 6 reactor.

  • PDF

The CCP Assessment of CANDU-6 Channel Loaded with CANFLEX-NU Fuel Bundle

  • Jun, Ji-Su;Park, Joo-Hwan;Suk, Ho-Chun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.374-379
    • /
    • 1997
  • The thermal margin of CANDU-6 reactor is estimated by the CCP, which is dependent on fuel channel hydraulics and the CHF of fuel bundle. This paper intents to describe the characteristics of CCP behavior for the CANDU-6 channel in which CANFLEX-NU fuel bundles are assumed to be loaded. Also, it includes the thermal margin evaluation of the CANDU-6 channel loaded with a mixed CANFLEX-NU and 37-element fuel bundles as a simulation of the partial loading of CANFLEX-NU fuel bundle in the CANDU-6 reactor. For the mixed fuel channels, the effects of axial flux distribution(AFD) on CCP were investigated by using the AFD tilted in the downstream. The CCP of CANFLEX-NU fuel bundle was found to be improved by the CHF enhancement, despite of the slight flow decrease, in case of both full and partial loading, compared with those of a standard 37-element fuel bundle.

  • PDF