• Title/Summary/Keyword: CANDU reactor

Search Result 206, Processing Time 0.027 seconds

BENCHMARK CALCULATION OF CANDU END SHIELDING SYSTEM

  • Gyuhong Roh;Park, Hangbok
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.618-623
    • /
    • 1998
  • A shielding analysis was performed for the end shield of CANDU 6 reactor. The one-dimensional discrete ordinate code ANISN with a 38-group neutron-gamma library, extracted from DLC-37D library, was used to estimate the dose rate for the natural uranium CANDU reactor. For comparison MCNP-4B calculation was performed for the same system using continuous, discrete and multi-group libraries. The comparison has shown that the total dose rate of the ANISN calculation agrees well with that of the MCNP calculation. However, the individual dose rate (neutron and gamma) has shown opposite trends between AMISN and MCNP estimates, which may require a consistent library generation for both codes.

  • PDF

Korean Nuclear Reactor Strategy for the Early 21st Century -A Techno-Economic and Constraints Comparison- (21세기 차세대 한국형 원자로 전략 -기술경제 제약요인 비교-)

  • Lee, Byong-Whi;Shin, Young-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.20-29
    • /
    • 1991
  • The system analysis for Korean nuclear power reactor option is made on the basis of reliability, cost minimization, finite uranium resource availability and nuclear engineering manpower supply constraints. The reference reactor scenarios are developed considering the future electricity demand, nuclear share, current nuclear power plant standardization program and manufacturing capacity. The levelized power generation cost, uranium requirement and nuclear engineering professionals demand are estimated for each reference reactor scenarios and nuclear fuel cycle options from the year 1990 up to the year 2030. Based on the outcomes of the analysis, uranium resource utilization, reliability and nuclear engineering manpower requirements are sensitive to the nuclear reactor strategy and associated fuel cycle whereas the system cost is not. APWR, CANDU longrightarrow FBR strategy is to be the best option for Korea. However, APWR, CANDU longrightarrow Passive Safe Reactor(PSR)longrightarrowFBR strategy should be also considered as a contingency for growing national concerns on nuclear safety and public acceptance deterioration in the future. FBR development and establishment of related fuel cycle should be started as soon as possible considering the uranium shortage anticipated between 2007 and 2032. It should be noted that the increasing use of nuclear energy to minimize the greenhouse effects in the early 21st century would accelerate the uranium resource depletion. The study also concludes that the current level of nuclear engineering professionals employment is not sufficient until 2010 for the establishment of nuclear infrastructure.

  • PDF

A Study on Design of the Trip Computer for ECC System Based on Dynamic Safety System

  • Kim, Seog-Nam;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.316-327
    • /
    • 2000
  • The Emergency Core Cooling System in current nuclear power plants typically has a considerable number of complex functions and largely cumbersome operator interfaces. Functions for initiation, switch-over between various phases of operation, interlocks, monitoring, and alarming are usually performed by relays and analog comparator logic which are difficult to maintain and test. To improve problems of an analog based ECC (Emergency Core Cooling) System, the trip computer for ECCS based on Dynamic Safety System (DSS) is implemented. The DSS is a computer based reactor protection system that has fail-safe nature and performs a dynamic self-testing. The most important feature of the DSS is the introduction of test signal that send the system into a tripped state. The test signals are interleaved with the plant signals to produce an output which switches between a tripped and health state. The dynamic operation is a key feature of the failsafe design of the system. In this work, a possible implementation of the DSS using PLC is presented for a CANDU Reactor. ECC System of the CANDU Reactor is selected as the reference system.

  • PDF

THE STATUS AND PROSPECT OF DUPIC FUEL TECHNOLOGY

  • Yang Myung-Seung;Choi Hang-Bok;Jeong Chang-Joon;Song Kee-Chan;Lee Jung-Won;Park Geun-Il;Kim Ho-Dong;Ko Won-Il;Park Jang-Jin;Kim Ki-Ho;Lee Ho-Hee;Park Joo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.359-374
    • /
    • 2006
  • Since 1991, Korea, Canada and United States have performed the direct use of spent pressurized water reactor (PWR) fuel in the Canada deuterium uranium (CANDU) reactors (DUPIC) fuel development project. Unlike the Tandem fuel cycle, which requires a wet reprocessing, the DUPIC fuel technology can directly refabricate CANDU fuels from the PWR spent fuel and, therefore, is recognized as a highly proliferation-resistant fuel cycle technology, which can be adopted even in non-proliferation treaty countries. The Korea Atomic Energy Research Institute (KAERI) has fabricated DUPIC fuel elements in a laboratory-scale remote fuel fabrication facility. KAERI has demonstrated the fuel performance in the research reactor, and has confirmed the operational feasibility and safety of a CANDU reactor loaded with the DUPIC fuel using conventional design and analysis tools, which will be the foundation of the future practical and commercial uses of DUPIC fuel.

Computer Based Core Monitoring System for an Operating CANDU Reactor

  • Yoon Moon Young;Kwon Hwan O.;Kim Kyung Hwa;Yeom Choong Sub
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.53-63
    • /
    • 2004
  • The research was performed to develop a CANDU-6 Core Monitoring System(CCMS) that enables operators to have efficient core management by monitoring core power distribution, burnup distribution, and the other important core variables and managing the past core history for Wolsong nuclear power plant unit 1. The CCMS uses Reactor Fueling Simulation Program(RFSP, developed by AECL) for continuous core calculation by integrating the algorithm and assumptions validated and uses the information taken from Digital Control Computer(DCC) for the purpose of producing basic input data. The CCMS has two modules; CCMS server program and CCMS client program. The CCMS server program performs automatic and continuous core calculation and manages overall output controlled by DataBase Management System. The CCMS client program enables users to monitor current and past core status in the predefined GUI(Graphic-User Interface) environment. For the purpose of verifying the effectiveness of CCMS, we compared field-test data with the data used for Wolsong unit 1 operation. In the verification the mean percent differences of both cases were the same($0.008\%$), which showed that the CCMS could monitor core behaviors well.

Physics Study of Canada Deuterium Uranium Lattice with Coolant Void Reactivity Analysis

  • Park, Jinsu;Lee, Hyunsuk;Tak, Taewoo;Shin, Ho Cheol;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.6-16
    • /
    • 2017
  • This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU)-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700) fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four factors and spectrum shifts. In the case of single bundle coolant voiding, the contribution of each of the four factors in the ACR-700 lattice is large in magnitude with opposite signs, and their summation becomes a negative reactivity effect in contrast to that of the CANDU-6 lattice. Unlike the coolant voiding in a single fuel bundle, the $2{\times}2$ checkerboard coolant voiding in the ACR-700 lattice shows a positive reactivity effect. The neutron current between the no-void and voided bundles, and the four factors of each bundle were analyzed to figure out the mechanism of the positive coolant void reactivity of the checkerboard voiding case. Through a sensitivity study of fuel enrichment, type of burnable absorber, and moderator to fuel volume ratio, a design strategy for the CANDU reactor was suggested in order to achieve a negative coolant void reactivity even for the checkerboard voiding case.

RELAP5 Simulation of the Small Inlet Header Break Test B8604 Conducted in the RD-14 Test Facility

  • Lee, Sukho;Kim, Manwoong
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.57-66
    • /
    • 2000
  • The RELAP5 code has been developed for best-estimate simulation of transients and accidents for pressurized water reactors and their associated systems, but it has not been fully assessed for those of CANDU reactors. However, a previous study suggested that the RELAP5 code could be applicable to simulate the transients and accidents for CANDU reactors. Nevertheless, it is indicated that there are some works to be resolved, such as modeling of headers and multi-channel simulation for the reactor core, etc. Therefore, this study has been initiated with an aim to identify the code applicability for all the postulated transients and accidents in CANDU reactors. In the present study, the small inlet header break experiment (B8604) in the RD-14 test facility was simulated with RELAP5/MOD3.2 code. The RELAP5 results were also compared with both experimental data and those of CATHENA analyses performed by AECL and the analyses demonstrated the code's capability to predict major . phenomena occurring in the transient with sufficient accuracy for both Qualitative and quantitative viewpoint However, some discrepancies in the depressurization of the primary heat transport system after the break and the consequent time delay of the major phenomena were also observed.

  • PDF

Technical and Economic Evaluations of CANDU Advanced Fuel Bundle Designs (CANDU 개량 핵연료 설계 방안 분석)

  • Seok, Ho-Chun;Hwang, Wan;Park, Ju-Hwan;Kim, Bong-Gu;Sim, Ki-Sub;Jung, Chang-Jun;Heo, Y.H.;Jun, J.S.
    • Nuclear Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.389-409
    • /
    • 1990
  • As a principal design of advanced CANDU fuel bundle, CANDU-KF39, CANDU-KF40 and CANDU-KF43 fuel bundles were proposed and evaluated with respect to the operating conditions of the CANDU-6 reactor of Wolsung Unit-1. From the results, the advanced fuel bundles show to be improved economical and technical benefits compared with the current 37-element bundle. Especially, it was appeared that the KF-39 fuel bundle has more benefits of the safety, technical and economical aspects of Wolsung Unit-1 rather than those of the KF-40 and KF-43 fuel bundles.

  • PDF

Development of an Irradiation Device for High Temperature Materials in HANARO (하나로에서의 고온재료 조사장치 개발)

  • Cho, Man Soon;Choo, Kee Nam
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.145-153
    • /
    • 2011
  • The irradiation tests of materials in HANARO have been performed usually at temperatures below $300^{\circ}C$ at which the RPV(Reactor Pressure Vessel) materials of the commercial reactors such as the light water reactor and CANDU are operated. As VHTR(Very High Temperature Reactor) and SFR(Sodium-cooled Fast Reactor) projects are being carried as a part of the present Gen-IV program in Korea, the requirements for irradiation of materials at temperatures higher than $500^{\circ}C$ are recently being gradually increased. To overcome the restriction in the use at high temperature of the existing Al thermal media, a new capsule with double thermal media composed of two kinds of materials such as Al-Ti and Al-graphite was designed and fabricated more advanced than the single thermal media capsule. At the irradiation test of the capsule, the temperature of the specimens successfully reached $700^{\circ}C$ and the integrity of Al, Ti and graphite material was maintained.