• Title/Summary/Keyword: CANDU reactor

Search Result 206, Processing Time 0.021 seconds

Delayed Hydride Cracking Velocity of CANDU Zr-2.5Nb Tubes in High Temperature Water

  • Kim Young Suk;Cho Sun Young;Im Kyung Soo;Cheong Yong Moo;Kim Sung Soo
    • Nuclear Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.206-213
    • /
    • 2003
  • This study focuses on an understanding of the environmental effect on delayed hydride cracking velocity (DHCV) of CANDU Zr-2.5Nb tubes. To simulate DHC susceptibility of the Zr-2.5Nb tubes in reactor operating conditions, DHC tests were successfully carried out in pressurized water at 180 and $250^{\circ}C$ using a self-designed autoclave for the first time. Using 17 mm compact tension specimens electorlytically charged to 34 and 60 ppm H, 3 to 7 DHCV data were determined in water at both temperatures and compared to those determined in air that were already confirmed to be valid through a round robin test on DHCV of Zr-2.5Nb tubes sponsored by a IAEA coordinated research program. The pressurized water environment has little effect on DHCV of Zr-2.5Nb tube in water at both temperatures even though DHCV is slightly lower in water than that in air. The lower DHCV of the Zr-2.5Nb tube during short-term tests is discussed in viewpoint of the cooling rate from the peak temperature to the test temperature.

Reflood Experiments with Horizontal and Vertical Flow Channels

  • Chung, Moon-Ki;Lee, Seung-Hyuck;Park, Choon-Kyung;Lee, Young-Whan
    • Nuclear Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.153-162
    • /
    • 1980
  • The investigation of the fuel cladding temperature behavior and heat transfer mechanism during the reflooding phase of a LOCA plays an important role in performance evaluation of ECCS and safety analysis of water reactors. Reflooding experiments were performed with horizontal and vertical flow channels to investigate the effect of coolant flow channel orientation on rewetting process. Emphasis was mainly placed on the CANDU reactor which has horizontal pressure tubes in core, and the results were compared with those of vertical channel. Also to investigate the rewetting process visually, the experiments by using a rod in annulus and a quartz tube heated outside were performed. It can be concluded that the rewetting velocity in horizontal flow channel is clearly affected by flow stratification, however, the average rewetting velocity is similar to those in vertical flow channel for same conditions.

  • PDF

An Investigation on Flow Stability with Damping of Flow Oscillations in CANDU-6 heat Transport System (CANDU-6 열수송 계통의 유동 진동감쇠에 의한 유동안정성 연구)

  • 김태한;심우건;한상구;정종식;김선철
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.163-177
    • /
    • 1996
  • An investigation on thermohydraulic stability of flow oscillations in the CANada Deuterium Uranium-600(CANDU-6) heat transport system has been conducted. Flow oscillations in reactor coolant loops, comprising two heat sources and two heat sinks in series, are possibly caused by the response of the pressure to extraction of fluid in two-phase region. This response consists of two contributions, one arising from mass and another from enthalpy change in the two-phase region. The system computer code used in the investigation os SOPHT, which is capable of simulating steady states as well as transients with varying boundary conditions. The model was derived by linearizing and solving one-dimensional, homogeneous single- and two-phase flow conservation equations. The mass, energy and momentum equations with boundary conditions are set up throughout the system in matrix form based on a node-link structure. Loop stability was studied under full power conditions with interconnecting the two compressible two phase regions in the figure-of-eight circuit. The dominant function of the interconnecting pipe is the transfer of mass between the two-phase regions. Parametric survey of loop stability characteristics, i. e., damping ratio and period, has been made as a function of geometrical parameters of the interconnection line such as diameter, length, height and orifice flow coefficient. The stability characteristics with interconnection line has been clarified to provide a simple criterion to be used as a guide in scaling of the pipe.

  • PDF

Development of an Integrity Evaluation System (WIES) for Fuel Channels in CANDU Reactors (중수로 연료관 건전성 평가시스템(WIES) 개발)

  • Choi, Sung-Nam;Kim, Hyung-Nam;Yoo, Hyun-Joo;Kwon, Dong-Kee;Hwang, Won-Gul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1273-1279
    • /
    • 2010
  • Pressure tubes at the CANada Deuterium Uranium (CANDU) nuclear power plants are periodically inspected in accordance with the CSA N285.4 code. If flaws that do not satisfy the criteria given in CSA N285.4 are detected, the code permits a fitness-for-service assessment to determine the acceptability of the flawed pressure tubes. In this paper, the Wolsong In-service Evaluation System (WIES) is introduced; this system has been developed for the assessment of the flawed pressure tubes and is based on CSA N285.8. Since the system evaluates the integrity of flawed pressure tubes exactly and promptly during an in-service inspection, it will help in operating the Wolsong nuclear power plants without prolonging the outage period.

Assessment of Leak Detection Capability of CANDU 6 Annulus Gas System Using Moisture Injection Tests

  • Nho, Ki-Man;Kim, Wang-Bae;Sim, Woo-Gun
    • Nuclear Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.403-415
    • /
    • 1998
  • The CANDU 6 reactor assembly consists of an array of 380 pressure tubes, which are installed horizontally in a large cylindrical vessel, the Calandria, containing the low pressure heavy water moderator. The pressure tube is located inside the calandria tube and the annulus between these tubes, which forms a closed loop with $CO_2$ gas recirculating, is called the Annulus Gas System(AGS). It is designed to give an alarm to the operator even for a small pressure tube leak by a very sensitive dew point meter so that he can take a preventive action for the pressure tube rupture incident. To judge whether the operator action time is enough or not in the design of Wolsong 2,3 & 4, the Leak Before Break(LBB) assessment is required for the analysis of the pressure tube failure accident. In order to provide the required data for the LBB assessment of Wolsong Units 2, 3, 4, a series of leak detection capability tests was performed by injecting controlled rates of heavy water vapour. The data of increased dew point and rates of rise were measured to determine the alarm set point for the dew point rate of rise of Wolsong Unit 2. It was found that the response of the dew point depends on the moisture injection rate, $CO_2$ gas flow rate and the leak location. The test showed that CANDU 6 AGS can detect the very small leaks less than few g/hr and dew point rate of rise alarm can be the most reliable alarm signal to warn the operator. Considering the present results, the first response time of dew point to the AGS $CO_2$ flow rate is approximated.

  • PDF

A REVIEW OF CANDU FEEDER WALL THINNING

  • Chung, Han-Sub
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.568-575
    • /
    • 2010
  • Flow Accelerated Corrosion is an active degradation mechanism of CANDU feeder. The tight bend downstream to Gray loc weld connection, close to reactor face, suffers significant wall thinning by FAC. Extensive in-service inspection of feeder wall thinning is very difficult because of the intense radiation field, complex geometry, and space restrictions. Development of a knowledge-based inspection program is important in order to guarantee that adequate wall thickness is maintained throughout the whole life of feeder. Research results and plant experiences are reviewed, and the plant inspection databases from Wolsong Units One to Four are analyzed in order to support developing such a knowledge-based inspection program. The initial thickness before wall thinning is highly non-uniform because of bending during manufacturing stage, and the thinning rate is non-uniform because of the mass transfer coefficient distributed non-uniformly depending on local hydraulics. It is obvious that the knowledge-based feeder inspection program should focus on both fastest thinning locations and thinnest locations. The feeder wall thinning rate is found to be correlated proportionately with QV of each channel. A statistical model is proposed to assess the remaining life of each feeder using the QV correlation and the measured thicknesses. W-1 feeder suffered significant thinning so that the shortest remaining life barely exceeded one year at the end of operation before replacement. W-2 feeder showed far slower thinning than W-1 feeder despite the faster coolant flow. It is believed that slower thinning in W-2 is because of higher chromium content in the carbon steel feeder material. The average Cr content of W-2 feeder is 0.051%, while that value is 0.02% for W-1 feeder. It is to be noted that FAC is reduced substantially even though the Cr content of W-2 feeder is still very low.

Risk Assessment for Abolition of Gross Containment Leak Monitoring System Test in CANDU Design Plant (중수로 원자로건물 총누설감시계통 시험 중지에 따른 리스크 영향 평가)

  • Bae, Yeon-Kyoung;Na, Jang-Hwan;Bahng, Ki-In
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.123-130
    • /
    • 2015
  • Wolsong Unit 2,3&4 has been performing a containment integrity test during power operation. This test could impact to the safe operation during test. If an accident occurs during pressure dropping phase, reactor trip can be delayed because of the increased pressure difference which causes a time delay to reach the trip set-point. On the contrary, if an accident occurs during pressure increasing phase, reactor trip could be accelerated because the pressure difference to the trip set-point decrease. Point Lepreau nuclear power plant, which installed GCLMS (Gross Containment Leakage Monitoring System) in 1990, has discontinued the test since 1992 due to these adverse effects. Therefore, we evaluated the risk to obviate the GCLMS test based on PWR's ILRT (Integrated Leak Rate Test) extension methodologies. The results demonstrate that risk increase rate is not high in case of performing only ILRT test at every 5 years instead of doing GCLMS test at every 1.5 years. In addition, the result shows that GCLMS test can be removed on a risk-informed perspective since risk increasement is in acceptable area of regulatory acceptance criteria.

The flow characteristics of a Main Cooling Water System for Nuclear Fuel Test Loop Installed in HANARO (하나로 핵연료 시험루프의 주냉각수 계통 유동해석)

  • Park, Young-Chul;Lee, Young-Sub;Chi, Dai-Yong;Ahn, Seong-Ho;Kim, Yong-Ki
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.444-447
    • /
    • 2008
  • A nuclear fuel test loop (after below, FTL) is installed in IR1 of an irradiation hole in HANARO for testing neutron irradiation characteristics and thermo hydraulic characteristics of a fuel loaded in a light water power reactor (PWR) or a heavy water power reactor (CANDU). There is an in-pile section (IPS) and an out-pile section (OPS) in this test loop. When HANARO is normally operated, the fuel loaded in the IPS has a nuclear reaction heat generated by a neutron irradiation. To remove the generated heat and to maintain an operation condition of the test fuel, a main cooling water system (MCWS) is installed in the OPS of the FTL. The pump can not continuously suck a fluid and not pressurize the fluid during a cold function test. To verify the flow characteristics of the MCWS, a flow net work analysis has been conducted. When the higher elevation pipelines wholly filled with coolant, it was confirmed through the analysis results that the pump pressurized the coolant normally. And the analysis results described the system characteristics with operation temperature and pressure variation satisfactorily.

  • PDF

Structural Analysis for the Determination of Design Variables of Spent Nuclear Fuel Disposal Canister

  • Youngjoo Kwon;Shinuk Kang;Park, Jongwon;Chulhyung Kang
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.327-338
    • /
    • 2001
  • This paper presents the results of a structural analysis to determine design variables such as the inner basket array type, and thicknesses of the outer shell, and lid and bottom of a spent nuclear fuel disposal canister. The canister construction type introduced here is a solid structure with a cast iron insert and a corrosion resistant overpack, which is designed for the spent nuclear fuel disposal in a deep repository in the crystalline bedrock, entailing an evenly distributed load of hydrostatic pressure from the groundwater and high swelling pressure from the bentonite buffer. Hence, the canister must be designed to withstand these high pressure loads. Many design variables may affect the structural strength of the canister. In this study, among those variables, the array type of inner baskets and thicknesses of outer shell and lid and bottom are attempted to be determined through a linear structural analysis. Canister types studied hear are one for the pressurized water reactor (PWR) fuel and another for the Canadian deuterium and uranium reactor (CANDU) fuel.

  • PDF

An Approach for Reducing Carbon-14 Stack Emissions via Optimal Use of Ion Exchang Resins at CANDU Plant

  • Sohn, Wook;Chi, Jun-Ha;Kang, Duk-Won
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.445-455
    • /
    • 2003
  • Relatively high carbon-14 emissions, which occurred at PHWR Plant during 1998 and 1999, made the site staff to implement several operational improvements: 1) the frequency and volume of the moderator cover gas purging were reduced through increased $O_2$ additions to the cover gas, 2) the 'old' resin columns were not used during re-start of the reactor from outage, 3) efforts were made to minimize air ingress, 4) the maximum service time of moderator ion-exchange columns were restricted to about 80 days. Through the improvements, the carbon-14 emission from each PHWR reactor returned to the normal levels during the remainder of 1999 and during 2000. We carried out a special surveillance at W-1 and W-3 from September 2001 to August 2002 to properly evaluate ways to optimize the use of moderator ion exchange resins from a C-14 perspective. The surveillance showed that only data that provided an operational marker for deciding when to remove the IX-resin column is an observed increase in the C-14 stack emissions themselves. Also, it is shown that any increase over the rate of 0.4 Ci $month^{-1}$ for two consecutive weeks may be the indication for an ion-exchange resin column change, especially if the IX-resin column has been in service for more than 80 days.

  • PDF