• Title/Summary/Keyword: CANDU pressure tube

Search Result 76, Processing Time 0.025 seconds

Finite Element Analysis of Hydrogen Concentration for Blister Growth Estimation of CANDU Pressure Tube (CANDU 압력관의 블리스터 성장 예측을 위한 유한요소 수소 확산 해석)

  • Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin;Kim, Young-Seok;Cheong, Yong-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.189-195
    • /
    • 2004
  • The pressure tubes, which contain high temperature heavy water and fuel, are within the core of a CANDU nuclear reactor, and are thus subjected to high stresses, temperature gradient, and neutron flux. Further, it is well known that pressure tubes of cold-worked Zr-2.5Nb materials result in hydrogen diffusion, which create fully-hydrided regions (frequently called Blister). Thus a proper investigation of hydrogen diffusion within zirconium-alloy nuclear components, such as CANDU pressure tube and fuel channels is essential to predict the structural integrity of these components. In this respect, this paper presents numerical investigation of hydrogen diffusion to quantify the hydrogen concentration fur blister growth of CANDU pressure tube. For this purpose, coupled temperature-hydrogen diffusion analyses are performed by means of two-dimensional finite element analysis. Comparison of predicted temperature field and blister with published test data shows good agreement.

Probabilistic Damage Mechanics Assessment of CANDU Pressure Tube using Genetic Algorithm (유전자 알고리즘을 이용한 CANDU 압력관의 확률론적 손상역학 평가)

  • Ko, Han-Ok;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin;Kim, Hong-Key;Choi, Young-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.192-192
    • /
    • 2008
  • As the lifetime of nuclear power plants (NPPs) reaches design life, the probability for fatal accidents increases. Most of accidents are known to be caused by degradation of mechanical components. Pressure tubes are the most important components in CANDU reactor. They are subjected to various aging mechanisms such as delayed hydride cracking (DHC), irradiation and corrosion, etc. Therefore, the integrity of pressure tube is key concern in CANDU reactor. Up to recently, conventional deterministic approaches have been utilized to evaluate the integrity of components. However, there are many uncertainties to prevent a rational evaluation. The objective of this paper is to assess the failure probability of pressure tube in CANDU. To do this, probability fracture mechanics (PFM) analysis based on the Genetic Algorithm (GA) is performed. For the verification of the analysis, a comparison of the PFM analysis using a commercial code and mathematical method is carried out.

  • PDF

CONCEPTUAL FUEL CHANNEL DESIGNS FOR CANDU-SCWR

  • Chow, Chun K.;Khartabil, Hussam F.
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.139-146
    • /
    • 2008
  • This paper presents two of the fuel channel designs being considered for the CANDU-SCWR, a pressure-tube type supercritical water cooled reactor. The first is an insulated pressure tube design. The pressure tube is thermally insulated from the hot coolant by a porous ceramic insulator. Each pressure tube is in direct contact with the moderator, which operates at an average temperature of about $80^{\circ}C$. The low temperature allows zirconium alloys to be used. A perforated metal liner protects the insulator from being damaged by the fuel bundles and erosion by the coolant. The coolant pressure is transmitted through the perforated metal liner and insulator and applied directly to the pressure tube. The second is a re-entrant design. The fuel channel consists of two concentric tubes, and a calandria tube that separates them from the moderator. The coolant enters between the annulus of the two concentric fuel channel tubes, then exits the fuel channel through the inner tube, where the fuel bundles reside. The outer tube bears the coolant pressure and its temperature will be the same as the coolant inlet temperature, ${\sim}350^{\circ}C$. Advantages and disadvantages of these designs and the material requirements are discussed.

Development of Creep Deflection Analysis Method and Program for CANDU Pressure Tube (중수로 압력관의 크리프 처짐 해석 기법 및 프로그램 개발)

  • Shim, Do-Jun;Huh, Nam-Su;Park, Bo-Kyu;Chang, Yoon-Suk;Kim, Yun-Jae;Kim, Young-Jin;Jung, Hyun-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.66-71
    • /
    • 2004
  • Estimation of the CANDU pressure tube deflection is important since the deflection may cause significant structural failure due to hydrogen diffusion and blister. However, there is no appropriate engineering model to estimate it exactly. The purpose of this paper is to propose a new analysis method and program to resolve this issue. For development of proper analysis method, a series of finite element analyses has been carried under elastic-creep condition. In addition, for effective estimation of the creep deflection, an analysis program named PC-DAS was developed based on the proposed method. Comparison of simple case study results with corresponding reference ones showed good agreement. Therefore, the proposed method and program can be utilized as one of valuable toolkit for integrity assessment of CANDU pressure tube.

  • PDF

Development of Integrity Evaluation System for CANDU Pressure Tube (CANDU 압력관에 대한 건전성 평가 시스템 개발)

  • Kwak, Sang-Log;Lee, Joon-Seong;Kim, Young-Jin;Park, Youn-Won
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.843-848
    • /
    • 2000
  • The pressure tube is a major component of the CANDU reactor, which supports nuclear fuel bundle and it's containment vessel. If a flaw is found during the periodic inspection from the pressure tubes, the integrity evaluation must be carried out, and the safety requirements must be satisfied for continued service. In order to complete the integrity evaluation, complicated and iterative calculation procedures are required. Besides, a lot of data and knowledge for the evaluation are required for the entire integrity evaluation process. For this reason, an integrity evaluation system, which provides efficient way of evaluation with the help of attached databases, was developed. The developed system was built on the basis of ASME Sec. XI and FFSG(Fitness For Service Guidelines for zirconium alloy pressure tubes in operating CANDU reactors) issued by the AECL, and covers the delayed hydride cracking(DHC). Various analysis methods are provided for the integrity evaluation of pressure tube. In order to verify the developed system, several case studies have been performed and the results were compared with those from AECL. A good agreement was observed between those two results.

  • PDF

Stress Intensity Factors for Axial Cracks in CANDU Reactor Pressure Tubes (CANDU형 원전 압력관에 존재하는 축방향 균열의 응력확대계수)

  • Lee, Kuk-Hee;Oh, Young-Jin;Park, Heung-Bae;Chung, Han-Sub;Chung, Ha-Joo;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.1
    • /
    • pp.17-26
    • /
    • 2011
  • CANDU reactor core is composed a few hundreds pressure tubes, which support and locate the nuclear fuels in the reactor. Each pressure tube provides pressure boundary and flow path of primary heat transport system in the core region. In order to guarantee the structural integrity of pressure tube flaws which can be found by in-service inspection, crack growth and fracture initiation assessment have to be performed. Stress intensity factors are important and basic information for structural integrity assessment of planar and laminar flaws (e. g. crack). This paper reviews and confirms the stress intensity factor of axial crack, proposed in CSA N285.8-05, which is an fitness-for-service evaluation code for pressure tubes in CANDU nuclear reactors. The stress intensity factors in CSA N285.8-05 were compared with stress intensity factors calculated by three methods (finite element results, API 579-1/ASME FFS-1 2007 Fitness-For-Service and ASME Boiler and Pressure Vessel Code Section XI). The effects of Poisson's ratio and anisotropic elastic modulus on stress intensity factors were also discussed.