• Title/Summary/Keyword: CANDU Spent nuclear fuel

Search Result 67, Processing Time 0.021 seconds

Fuel Composition Heterogeneity Effect for DUPIC Core

  • Park, Hangbok;Bo W. Rhee;Park, Hyunsoo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.109-114
    • /
    • 1995
  • A preliminary study of the heterogeneity effect of spent P% fuel in CANDU was made using a reduced spent PWR fuel data base. The instantaneous core simulation has shown that the refueling ripple in the CANDU reactor is large if the spent PWR fuel is directly used. But the fuel heterogeneity effect can be reduced appreciably by blending spent PWR fuel with a small amount of fresh UO$_2$. The refueling simulation has shown that the operating margins of 6.0% and 8.7% are achievable for the peak channel and bundle powers, respectively, with the blended fuel.

  • PDF

Review of Instant Release Fractions of Long-lived Radionuclides in CANDU and PWR Spent Nuclear Fuels Under the Geological Disposal Conditions

  • Choi, Heui Joo;Koo, Yang-Hyun;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.231-241
    • /
    • 2022
  • Several countries, including Korea, are considering the direct disposal of spent nuclear fuels. The radiological safety assessment results published after a geological repository closure indicate that the instant release is the main radiation source rather than the congruent release. Three Safety Case reports recently published were reviewed and the IRF values of seven long-lived radionuclides, including relevant experimental results, were compared. According to the literature review, the IRF values of both the CANDU and low burnup PWR spent fuel have been experimentally measured and used reasonably. In particular, the IRF values of volatile long-lived nuclides, such as 129I and 135Cs, were estimated from the FGR value. Because experimental leaching data regarding high burnup spent nuclear fuels are extremely scarce, a mathematical modelling approach proposed by Johnson and McGinnes was successfully applied to the domestic high burnup PWR spent nuclear fuel to derive the IRF values of iodine and cesium. The best estimate of the IRF was 5.5% at a discharge burnup of 55 GWd tHM-1.

A Study on the Micro-Focus X-Ray Inspection for Confirming the Soundness of End Closure Weld of DUPIC Fuel Elements (DUPIC 핵연료봉 봉단 용접부 건전성 확인을 위한 미세초점 X-선 투과시험에 관한 연구)

  • 김웅기;김수성;이정원;양명승
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.88-94
    • /
    • 2001
  • DUPIC (Direct use of spent PWR fuel in CANDU reactors) nuclear fuel is a CANDU fuel fabricated remotely from spent PWR fuel materials in a hot cell. The soundness of the end closure welds of nuclear fuel elements is an important factor for the safety and performance of nuclear fuel. To evaluate the soundness of the end closure welds of DUPIC fuel element, a precise X-ray inspection system is developed using a micro-focus X-ray generator with an image intensifier and a real time camera system. The fuel elements made of Zircaloy-4 and stainless steel by an Nd:YAG laser welding and a TIG welding aye inspected by the developed inspection system. The soundness of the welds of the fuel elements was confirmed by the X-ray inspection process, and the irradiation test of DUPIC fuel elements has been successfully completed at the HANARO research reactor.

  • PDF

Irradiation Effect on Silo Dry Storage Systems for CANDU Spent Nuclear Fuel

  • Taehyung Na;Yeji Kim;Donghee Lee;Taehyeon Kim;Sunghwan Chung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.117-128
    • /
    • 2024
  • The 300 concrete silo systems installed and operated at the site of Wolsong nuclear power plant (NPP) have been storing CANDU spent nuclear fuel (SNF) under dry conditions since 1992. The dry storage system must be operated safely until SNF is delivered to an interim storage facility or final repository located outside the NPP in accordance with the SNF management policy of the country. The silo dry storage system consists of a concrete structure, liner steel plate in the inner cavity, and fuel basket. Because the components of the silo system are exposed to high energy radiation owing to the high radioactivity of SNF inside, the effects of irradiation during long-term storage must be analyzed. To this end, material specimens of each component were manufactured and subjected to irradiation and strength tests, and mechanical characteristics before and after irradiation were examined. Notably, the mechanical characteristics of the main components of the silo system were affected by irradiation during the storage of spent fuel. The test results will be used to evaluate the long-term behavior of silo systems in the future.