• Title/Summary/Keyword: CAN(Control Area Network)

Search Result 513, Processing Time 0.029 seconds

Design Methodology of Networked Control System using CAN(Controller Area Network) Protocol (CAN(Controller Area Network) 프로토콜을 이용한 네트워크 제어시스템 설계)

  • Jung, Joon-Hong;Choi, Soo-Young;Cho, Yong-Seok;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2328-2330
    • /
    • 2003
  • This paper presents a new design methodology of networked control system using CAN(Controller Area Network). Feedback control systems having control loops closed through a network are called networked control systems. We design CAN nodes which can transmit control and monitoring data through network bus and apply these to networked control system design. We analyze the variation of stability property according to network-induced delay and determine a proper sampling period of networked control system that preserves stability performance. The results of the experimental example validate effectiveness of our networked control system.

  • PDF

Analysis of the Position Control Performance under the Time Delay in the Controller Area Network (CAN 시간지연에 대한 아라고 진자의 위치제어 성능분석)

  • Park, Tae-Dong;Lee, Jae-Ho;Youn, Su-Jin;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.354-356
    • /
    • 2006
  • In this paper, the position control performance of networked control systems is analyzed when time delay through the network is considered. Integrating a control system into a network has great advantages over the traditional control system which uses point to point connection: it allows remarkable reduction in wiring, makes it easy to install and maintain the system, and improves compability. However, a networked control system has the critical defect that network uncertainties, such as time delay, can degrade the control system's performance. Therefore, the major concern of a networked control system is analyzing the effect of network uncertainties. This paper is concerned with PID controller performance for stability region, critical stability region and unstability region under the time delay in the Controller Area Network.

  • PDF

Embedded System with Controller Area Network(CAN) for Intelligent Power Switches in Automobiles (CAN(Controller Area Network) 통신을 지원하는 차량용 지능형 파워 스위치를 위한 임베디드 시스템)

  • Kim, Sun-Woo;Jang, Yong-Joon;Park, Joon-Sang;Ro, Won-Woo
    • The KIPS Transactions:PartC
    • /
    • v.17C no.1
    • /
    • pp.129-134
    • /
    • 2010
  • Intelligent Power Switch (IPS) is a semiconductor device which contains a logic circuit in itself. It has received significant attention as a switching component to substitute the fuse and relay components in common automobile since the internal logic provides the controllability on the loads. However, a control system for the IPS status control and a network system to share the status information of IPS are required to fully exploit the capabilities of IPS. In this paper, we propose a control circuit and algorithm using IPS. Also the communication system between the control systems and IPS components using Control Area network (CAN) are proposed.

A Study on the Power System Control and Monitoring Technique Using CAN (CAN을 이용한 발전계통의 제어 및 모니터링 기법 연구)

  • Jung, Joon-Hong;Choi, Soo-Young;Park, Ki-Heon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.268-276
    • /
    • 2003
  • In this paper, we present a new control and monitoring technique for a power system using CAN(Controller Area Network). Feedback control systems having co'ntrol loops closed through a network(i.e. Ethernet, ControlNet, CAN) are called NCSs(Networked Control Systems). The major problem of NCSs is the variation of stability property according to time delay including network-induced delay and computation delay in nodes. We present a new stability analysis method of NCSs with time delay exploiting a state-space model of LTI(Linear Time Invariant) interconnected systems. The proposed method can determine a proper sampling period of NCSs that preserves stability performance even in NCSs with a dynamic controller. We design CAN nodes which can transmit control and monitoring data through CAN bus and apply these to NCSs for a power system. The results of the experiment validate effectiveness of our control and monitoring technique for a power system.

Application of Controller Area Network to Humanoid Robot (휴머노이드 로봇에 대한 CAN(Controller Area Network) 적용)

  • Ku, Ja-Bong;Huh, Uk-Youl;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.77-79
    • /
    • 2004
  • Because robot hardware architecture generally is consisted of a few sensors and motors connected to the central processing unit, this type of structure is led to time consuming and unreliable system. For analysis, one of the fundamental difficulties in real-time system is how to be bounded the time behavior of the system. When a distributed control network controls the robot, with a central computing hub that sets the goals for the robot, processes the sensor information and provides coordination targets for the joints. If the distributed system supposed to be connected to a control network, the joints have their own control processors that act in groups to maintain global stability, while also operating individually to provide local motor control. We try to analyze the architecture of network-based humanoid robot's leg part and deal with its application using the CAN(Controller Area Network) protocol.

  • PDF

DEVELOPMENT OF A NETWORK-BASED TRACTION CONTROL SYSTEM, VALIDATION OF ITS TRACTION CONTROL ALGORITHM AND EVALUATION OF ITS PERFORMANCE USING NET-HILS

  • Ryu, J.;Yoon, M.;SunWoo, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.687-695
    • /
    • 2006
  • This paper presents a network-based traction control system(TCS), where several electric control units(ECUs) are connected by a controller area network(CAN) communication system. The control system consists of four ECUs: the electric throttle controller, the transmission controller, the engine controller and the traction controller. In order to validate the traction control algorithm of the network-based TCS and evaluate its performance, a Hardware-In-the-Loop Simulation(HILS) environment was developed. Herein we propose a new concept of the HILS environment called the network-based HILS(Net-HILS) for the development and validation of network-based control systems which include smart sensors or actuators. In this study, we report that we have designed a network-based TCS, validated its algorithm and evaluated its performance using Net-HILS.

In-Vehicle Auto temperature control System by CAN Network (CAN 통신을 이용한 차량 내 자동 온도조절 시스템)

  • Kim, Jang-ju;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.90-93
    • /
    • 2009
  • Recently, CAN(Controller Area Network) being used in vehicle network system is suitable Network Protocol for smart vehicles with a future that need many ECUs, and it guarantees stability and reliability. It is revealed that being equipped many ECU could reduce the increasing of energy consumption and energy cost from the increasing of Wiring Harness's space and weight. In this paper, future smart vehicle control Air conditioner and heater for convenient and comfortable driving as using CAN protocol and implement auto control system According to driver's requirement using temperature in the vehicle.

  • PDF

Network Type Distributed Control of a System with Inner Loop Control Structure (내부 궤환 제어 구조를 갖는 시스템의 네트워크형 분산 제어)

  • Choi, Goon-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.2
    • /
    • pp.100-108
    • /
    • 2014
  • In this paper, an idea of a network type distributed control of a system with inner loop control structure will be considered. Generally, in case of a control system with inner loop control structure, it is not easy to implement circuits and programming. Using network type distributed control structure, it will show how it is better than before. CAN(Controller Area Network) protocol which has been known that it has a high reliability on the signal in the various network protocols is used. Also, Arago's Disk System which has a inner loop control stucture is made to validate effectiveness of the proposed method.

Inverted Cart Pendulum Control Using CAN(Controller Area Network) (CAN(Contro1ler Area Network)을 이용한 역진자 시스템 제어)

  • Choi, Seong-Seop;Yu, Lae-Sung;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2242-2244
    • /
    • 2003
  • This paper considers a networked control system (NCS) that consists of an inverted cart pendulum, a digital controller, and a controller area network (CAN) in which the actuator and sensors of the pendulum are connected to form a closed-loop system. The worst-case message response time (WCMRT) in the CAN is analyzed and the analysis results are applied to the target control system. For the case where the control system cannot satisfy the WCMRT condition and therefore time delays are inevitable, the Luck and Ray method is used to compensate the network-induced time delays. Simulations are carried out to show the feasibility of the proposed scheme.

  • PDF

A Study on Development for Multiplexing of CAR Network with Controller Area Network (CAN) Communication Protocol (Controller Area Network (CAN) 통신 프로토콜을 사용한 자동차 Network의 다중화 기법의 개발에 관한 연구)

  • 정차근
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.29-32
    • /
    • 2001
  • This paper describes a development of the integrated controller system for car electrical signal control with CAN communication protocol. The CAN protocol is a robust serial bus system for the control of distributed module in the multiplexed network. After a brief of the main features of the CAN will be addressed, this paper presents the result of the development of the integrated hardware system overall control program.

  • PDF