• Title/Summary/Keyword: CAMPmold

Search Result 2, Processing Time 0.022 seconds

Design of Gate System in Injection Molding of a Dashboard by CAMPmold

  • Choi D. S.;Han K. H.;Kim H. S.;Im Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.04a
    • /
    • pp.33-39
    • /
    • 2003
  • Injection molding is widely used in producing various plastic parts due to its high productivity and the demand for high precision injection molded products is ever increasing. To achieve successful product quality and precision, the design of gating and runner systems in the injection mold is very important since it directly influences melt flow into the cavity. Some defects such as weld lines and overpacking can be effectively controlled with proper selection of gate locations. In the present study, the design of gate locations in injection molding of a dashboard for automobiles was carried out with CAMPmold, a PC-based simulation system for injection molding. A dummy runner was developed to simulate a runner system in order to increase the efficiency of the analysis. The numbers and locations of gates were varied in the present investigation as that an acceptable design was obtained in terms of reduced maximum pressure and clamping force.

  • PDF

Design of Gate Location in Injection Molding of a Dashboard Using Dummy Runner (모조 러너를 이용한 계기판 사출성형의 게이트 위치 설계)

  • Han, Gyeong-Hui;Choe, Du-Sun;Kim, Hong-Seok;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1575-1582
    • /
    • 2001
  • Injection molding is widely used in producing various plastic parts due to its high productivity, and the demand for injection molded products with high precision is increasing. To achieve successful product quality and precision, the design of gating and runner system in injection mold is very important because it influences the melt flow into the cavity. Some deflects, such as weld lines and overpacking, can be effectively controlled with proper selection of gate locations. In the present study, the design of gate locations in injection molding of a dashboard fur automobiles was carried out with CAMP mold, a PC-based simulation system for injection molding. A dummy runner system was developed to simulate a runner system in order to increase the efficiency of the analysis procedure. The numbers and locations of gates were iteratively determined in the present investigation. In this procedure, an acceptable design was obtained in terms of reducing the maximum pressure and clamping force.