• Title/Summary/Keyword: CALPUFF modeling

Search Result 21, Processing Time 0.021 seconds

CALPUFF Modeling of Odor/suspended Particulate in the Vicinity of Poultry Farms (축사 주변의 악취 및 부유분진의 CALPUFF 모델링: 계사 중심으로)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.90-104
    • /
    • 2019
  • In this study, CALPUFF modeling was performed, using a real surface and upper air meterological data to predict trustworthy modeling-results. Pollutant-releases from windscreen chambers of enclosed poultry farms, P1 and P2, and from a open poultry farm, P3, and their diffusing behavior were modeled by CALPUFF modeling with volume sources as well as by finally-adjusted CALPUFF modeling where a linear velocity of upward-exit gas averaged with the weight of each directional-emitting area was applied as a model-linear velocity ($u^M_y$) at a stack, with point sources. In addition, based upon the scenario of poultry farm-releasing odor and particulate matter (PM) removal efficiencies of 0, 20, 50 and 80% or their corresponding emission rates of 100, 80, 50 and 20%, respectively, CALPUFF modeling was performed and concentrations of odor and PM were predicted at the region as a discrete receptor where civil complaints had been frequently filed. The predicted concentrations of ammonia, hydrogen sulfide, $PM_{2.5}$ and $PM_{10}$ were compared with those required to meet according to the offensive odor control law or the atmospheric environmental law. Subsequently their required removal efficiencies at poultry farms of P1, P2 and P3 were estimated. As a result, a priori assumption that pollutant concentrations at their discrete receptors are reduced by the same fraction as pollutant concentrations at P1, P2 and P3 as volume source or point source, were controlled and reduced, was proven applicable in this study. In case of volume source-adopted CALPUFF modeling, its required removal efficiencies of P1 compared with those of point source-adopted CALPUFF modeling, were predicted similar each other. However, In case of volume source-adopted CALPUFF modeling, its required removal efficiencies of both ammonia and $PM_{10}$ at not only P2 but also P3 were predicted higher than those of point source-adopted CALPUFF modeling. Nonetheless, the volume source-adopted CALPUFF modeling was preferred as a safe approach to resolve civil complaints. Accordingly, the required degrees of pollution prevention against ammonia, hydrogen sulfide, $PM_{2.5}$ and $PM_{10}$ at P1 and P2, were estimated in a proper manner.

A Study on Fine Dust Modeling for Air Quality Prediction (미세먼지 확산 모델링을 이용한 대기질 예측 시스템에 대한 연구)

  • Yoo, Ji-Hyun
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1136-1140
    • /
    • 2020
  • As air pollution caused by fine dust becomes serious, interest in the spread of fine dust and prediction of air quality is increasing. The causes of fine dust are very diverse, and some fine dust naturally occurs through forest fires and yellow dust, but most of them are known to be caused by air pollutants from burning fossil fuels such as petroleum and coal or from automobile exhaust gas. In this paper, the CALPUFF model recommended by the US EPA is used, and CALPUFF diffusion modeling is performed by generating a wind field through the CALMET model as a meteorological preprocessing program that generates a three-dimensional wind field, which is a meteorological element required by CALPUFF. Through this, we propose a fine dust diffusion modeling and air quality prediction system that reflects complex topography.

Odor Modeling of acetaldehyde in Gumi National Industrial Complex (구미국가산업단지의 아세트알데히드 악취모델링)

  • Lee, Eun Ju;Akhtar, Muhammad Saeed;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.22-35
    • /
    • 2016
  • In this study CALPUFF modeling was performed to establish a correlation between regions of frequent civil odor complaints near Gumi national industrial complex and odor-emission facilities of synthetic fiber manufacturers in the same area as main acetaldehyde-emission point sources. As a result of the CALPUFF modeling, the maximum concentration of acetaldehyde in Gumi national industrial complex was reduced from O ($10^{-5}g/m^3$) to O ($10^{-6}g/m^3$) upon improving emission facilities of T company so that the maximum concentrations of acetaldehyde frequently appeared in complex 3. In addition, the predicted range of the maximum acetaldehyde concentration in Gumi national industrial complex was also improved in comparison with that prior to improving emission facilities of T company. These maximum concentrations of acetaldehyde obtained to estimate the expected contribution of total acetaldehyde point source by CALPUFF modeling showed the similar values to those measured in 'HAPs investigation in the region of Gumi-Daegu' and were consistent to the trend of civil odor complaints. Therefore, the expected contribution of total acetaldehyde point source was validated. The relative contribution of T company upon improving its emission facilities was predicted to be lowered by more than factor of two, compared to that prior to improving its emission facilities. To the contrary, the relative contribution of W company upon improving emission facilities of T company was predicted to be increased by more than factor of two, compared to that prior to improving emission facilities of T company. This indicates that the contribution of aldehyde point sources of W company was relatively increased upon improving emission facilities of T company.

Odor Modeling of trimethyl amine in Gumi National Industrial Complex (구미국가산업단지의 트리메틸아민 악취모델링)

  • Lee, Eun Ju;Khan, Mousumee;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.187-199
    • /
    • 2016
  • In this study CALPUFF modeling was performed to predict a contribution of a separate single point pollutant source as well as of total point pollutant sources of major synthetic fiber manufacturers in Gumi national industrial complex to atmospheric trimethylamine concentration of the same area. In addition, a contribution of the separate single point pollution source to the atmospheric trimethylamine concentration of the same area was estimated relatively to the total point pollutant sources. As a result of the CALPUFF modeling, the maximum atmospheric concentration of trimethylamine in Gumi national industrial complex was appeared upon improving T company emission facility frequently in complex 3 in winter (January) and spring (April) while frequently in complex 1 in summer (July) and autumn (October). Besides, the predicted range of the maximum atmospheric concentration of trimethylamine in complex 1 was improved upon improving its emission facility. However, even though in complex 3 the upper bound of the predicted maximum atmospheric concentrations of trimethylamine was increased upon improving T company emission facility, the predicted value of their second upper bound below the upper bound was very similar to the upper bound of measured atmospheric trimethylamine concentrations in Gumi prior to improving its emission facility. Thus, the effect of improving T company emission facility was estimated huge in complex 1 while it was trivial in complex 3. These maximum concentrations of trimethylamine predicted to estimate the expected contribution of total point pollutant sources by CALPUFF modeling showed the similar values to those measured in the region of Gumi. Therefore, the expected contribution of total point pollutant sources to atmospheric trimethylamine concentration in the area of Gumi was validated.

Comparative Analysis of the CALPUFF and AERMOD Atmospheric Dispersion Models for Ready-Mixed Concrete Manufacturing Facilities Generating Particulate Matter (미세먼지 발생 레미콘시설에서의 대기확산모델 CALPUFF와 AERMOD 비교 분석)

  • Han, Jin-hee;Kim, Younghee
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.3
    • /
    • pp.267-278
    • /
    • 2021
  • Objectives: Using atmospheric dispersion representative models (AERMOD and CALPUFF), the emissions characteristics of each model were compared and analyzed in ready-mixed concrete manufacturing facilities that generate a large amount of particulate matter (PM-10, PM-2.5). Methods: The target facilities were the ready-mixed concrete manufacturing facilities (Siheung RMC, Goyang RMC, Ganggin RMC) and modeling for each facility was performed by dividing it into construction and operation times. The predicted points for each target facility were selected as 8-12ea (Siheung RMC 10, Goyang RMC 8, and Gangjin RMC 12ea) based on an area within a two-kilometer radius of each project district. The terrain input data was SRTM-3 (January-December 2019). The meteorological input data was divided into surface weather and upper layer weather data, and weather data near the same facility as the target facility was used. The predicted results were presented as a 24-hour average concentration and an annual average concentration. Results: First, overall, CALPUFF showed a tendency to predict higher concentrations than AERMOD. Second, there was almost no difference in the concentration between the two models in non-complex terrain such as in mountainous areas, but in complex terrain, CALPUFF predicted higher concentrations than AERMOD. This is believed to be because CALPUFF better reflected topographic characteristics. Third, both CALPUFF and AERMOD predicted lower concentrations during operation (85.2-99.7%) than during construction, and annual average concentrations (76.4-99.9%) lower than those at 24 hours. Fourth, in the ready-mixed concrete manufacturing facility, PM-10 concentration (about 40 ㎍/m3) was predicted to be higher than PM-2.5 (about 24 ㎍/m3). Conclusions: In complex terrain such as mountainous areas, CALPUFF predicted higher concentrations than AERMOD, which is thought to be because CALPUFF better reflected topographic characteristics. In the future, it is recommended that CALPUFF be used in complex terrain and AERMOD be used in other areas to save modeling time. In a ready-mixed concrete facility, PM-10, which has a relatively large particle size, is generated more than PM-2.5 due to the raw materials used and manufacturing characteristics.

Analysis of the Effect of Differences in Spatial Resolution of Land-use/cover Data on the Simulation of CALPUFF (토지피복 자료의 해상도 차이가 CALPUFF 농도 모의에 미치는 영향 분석)

  • Hwang, Suyeon;Ham, Jungsoo;Lee, Youngjin;Choi, Jinmu
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1461-1473
    • /
    • 2021
  • The purpose of this study is to ascertain how the level of resolution of land cover data affects on the local distribution and diffusion of fine dust. the CALPUFF model, which considers the spatio-temporal terrain conditions and changes in weather conditions, was used to estimate PM10 concentration in the Pyeongchon, Anyang-si, Gyeonggi-do. Three different resolutions of land cover data including 20 m, 50 m, and 100 m were compared as the input of the modeling. Using higher resolution land cover data (20 m), the wind speed of the simulated region was the largest and the PM10 concentration was the lowest. Through this study, we confirm that the resolution level of land-use/cover data can affect the local distribution and diffusion of fine dust, which can be detected by CALPUFF. Therefore, when using CALPUFF to simulate fine dust in the future, it can be suggested that checking the impact on spatial resolution according to the form of land cover in advance and proceeding with the simulation can achieve mote accurate results.

Tracer Experiment for the Investigation of Urban Scale Dispersion of Air Pollutants - Simulation by CALPUFF Dispersion Model and Diffusion Feature of Tracer Gases (추적자 확산 실험에 의한 서울 도심 확산 현상 연구 - 추적기체의 확산특징과 CALPUFF 모델에 의한 모사)

  • Lee, Chong-Bum;Kim, Jea-Chul;Lee, Gang-Woong;Ro, Chul-Un;Kim, Hye-Kyeong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.405-419
    • /
    • 2007
  • A series of tracer experiments for the evaluation of atmospheric dispersion was performed over the urban area of Seoul using two inert, non-deposition perfluorocarbon (PMCH and m-PDCH) gases during three years campaign on 2002, 2003 and 2005. 30 sampling sites for collecting these tracers were located along two arcs of 2.5 and 5 kilometers downwind from the release point. About ten measurements which each lasted for 2 hours or 4 hours were made over the two consecutive days during each campaign. CALPUFF and MM5 meteorological model were applied to evaluate the urban dispersion in detail. Size of Modeling domain was $27\;km{\times}23\;km$ and the fine nest in the modeling domain had a grid size of 0.5 km. The results showed that CALPUFF dispersion model had a tendency to estimate tracer concentrations about $2{\sim}5$ times less than those of ambient samples under many conditions. These consistent inaccuracy in urban dispersion was attributed to inherent inaccuracy and lack of details in terrain data at urban area.

Fine dust(PM10) emission calculated of Dong-Hae harbor around area using inverse modeling technique (역모델링 기법을 이용한 동해항 주변지역 미세먼지 배출량 산출)

  • Kim, Ji-Hyun;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.649-660
    • /
    • 2015
  • Data obtained from the Calpuff inverse modeling estimate the emission amount of pollutants, and enable to establish the aim for reduction through the comparison of various cases. This study pursued to accumulate the fundamental data by the Calpuff inverse modeling for five areas in the vicinity of Donghae harbor, which focused on reduction of atmospheric fine dust. As a result of evaluation of the allowed emission amount for local sites, site-D required the most reduction, $4.95{\mu}g/m^2{\cdot}S$, based on the atmospheric guideline, $50{\mu}g/m^3$. The theoretical mitigation could decrease the average concentration of PM10 to $42.6{\mu}g/m^3$ for the study field (Donghae waste water treatment plant). Modeling only for site-A emission showed the potential concentration around the residential area of Donghae harbor, $40{\sim}50{\mu}g/m^3$. However, it will rise over $50{\mu}g/m^3$ with the addition of background level. Therefore no more emission would be allowed. Site-B including commercial area and unpaved field required the reduction of $0.11{\mu}g/m^2{\cdot}S$ due to vehicles and fugitive dust. Site-C and E did not emit additional pollutants.

Modeling of SO$_2$ Emissions from Yatagan Power Plant

  • Im, Ulas;Yenigun, Orhan
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.69-72
    • /
    • 2003
  • The meteorological model, CALMET, and its plume dispersion model, CALPUFF, were used in order to simulate the dispersion of $SO_2$ emitted from Yatagan Power Plant and its effect on Yatagan district in the episodic event on December 2 and 3, 2000. It is found that south westerly and light winds and the nighttime surface inversion layers lead to accumulation of pollutants over Yatagan district. The results are compared with the measurements done by Local Environmental Authorities of Mu la. The simulation results indicate that the maximum ground level concentrations were found northeast from the source, which agrees with experimental measurement. On the other hand, the magnitude of results obtained with the model shows some differences compared with experimental measurements.

  • PDF

Evaluation of the CALPUFF Model Using Improved Meteorological Fields in Complex Terrain of East Sea Coast (동해안의 복잡지형에서 기상장 개선에 따른 CALPUFF 모델의 평가)

  • Lee, Chong-Bum;Kim, Jea-Chul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.1
    • /
    • pp.15-25
    • /
    • 2009
  • Donghae city is one of the most representative cement industrial city in Korea. The area is faced with the East Sea to the East and with high montane region of Tae-Back mountain range to the West. Many pollutant sources of air pollution are located near the coast, but the largest point sources of the region are located at the bottom of the mountain area in Donghae city. The local wind is highly affected by local topography and plays an important role in transport and dispersion of contaminants from the pollution sources. This study was designed to evaluate enhancement of MM5 predictions by using Four Dimensional Data Assimilation (FDDA), the SONDE data and the national meteorological station, data only. The alternative meteorological fields predicted with and without FDDA were used to simulate spatial and temporal variations of NOx in combined with Atmospheric Dispersion Models (CALPUFF). For the modeling domain, the alternative meteorological fields with 1.1 km spatial resolution were interpolated to the CALMET with 0.5 km resolution. The vertical layers set to have 35 and 12 layers for MM5 and CALPUFF, respectively. MM5 with the FDDA did not resulted in significant improvement of meteorological field prediction in Donghae region, which is primarily because of complex geography and wind scheme. The result of CALPUFF, however, showed reduction of uncertainty errors by using the interpolation scheme of the actual measurement data.