There have been developed a number of methods to assess the abrasivity of rock materials with the increased use of mechanized rock excavation. These methods range from determination of abrasive and hard mineral content using petrographic thin section analysis to weight loss or development of wear flat on a specified cutting tool. The Cerchar abrasivity index (CAI) test has been widely accepted for the assessment of rock abrasiveness. This test has been considered to provide a reliable indication of rock abrasiveness for isotropic rocks. However, a great amount of rocks in nature are anisotropic. Hence, viability assessment of Cerchar abrasivity test for the anisotropic rocks is investigated in this research. The relationship between CAI value and quartz content for the isotropic rocks is well known in literature. However, a correlation between EQ, F-Schimazek value, Rock Abrasivity Index (RAI) and CAI of anisotropic rocks such as phyllite was done first time in literature with this research. The results obtained with this research show F-Schimazek values and RAI values should be considered when determination of the abrasivity of anisotropic rocks instead of just using Cerchar scratch test.
The most widely used parameter to represent rock abrasiveness is the Cerchar abrasivity index (CAI). The CAI value can be applied to predict wear in TBM cutters. It has been extensively demonstrated that the CAI is affected significantly by cementation degree, strength, and amount of abrasive minerals, i.e., the quartz content or equivalent quartz content in rocks. The relationship between the properties of rocks and the CAI is investigated in this study. A database comprising 223 observations that includes rock types, uniaxial compressive strengths, Brazilian tensile strengths, equivalent quartz contents, quartz contents, brittleness indices, and CAIs is constructed. A linear model is developed by selecting independent variables while considering multicollinearity after performing multiple regression analyses. Machine learning-based regression methods including support vector regression, regression tree regression, k-nearest neighbors regression, random forest regression, and artificial neural network regression are used in addition to multiple linear regression. The results of the random forest regression model show that it yields the best prediction performance.
본 연구에서는 암석 절삭 장비의 마모에 직접적인 영향을 주는 인자인 암석의 마모도(abrasiveness) 측정에 관한 연구를 수행하였다. 몇 가지 방법 중 세르샤 마모 시험(Cerchar abrasiveness test)을 통하여 암석의 마모도에 영향을 미치는 인자를 확인하고 효율적인 시험을 수행하기 위한 조건들을 연구하였다. 국내 19종 암석에 대한 시험 결과를 통하여, 세르샤 마모 지수(CAI, Cerchar Abrasiveness Index)에 영향을 미치는 암석의 역학적 물성(단축압축강도, 간접인장강도, 탄성계수, 포아송비, 공극률, 쇼어경도)과의 상관관계를 찾아보았고 X선 회절 분석을 통하여 암석의 구성 광물 중 마모도에 가장 큰 영향을 미치는 석영 함량, 등가 석영 함량과의 관계도 확인하였다. 그 결과로 암석의 입자 결합 특성보다 광물의 특성이 CAI에 영향을 더 미치는 것으로 관찰되었고, 단축압축강도와 등가 석영함량의 함수로 CAI를 예측하는 모델을 제시하였으며 핀의 경도가 커질수록 CAI값이 선형적으로 작아짐을 확인하였다. 수치해석적 연구를 통해 세르샤 마모 시험을 모사한 결과 초기 긁힘 거리에서 대부분의 마모가 발생함을 확인하였고 하중이 증가할수록 CAI값이 증가함을 확인하였다.
Wetness index obtained from topography data of Woogak Mountain was compared with chemical alteration index(CAI), clay minerall contents of rock, and magnetic susceptibility changes of outcrops, and they show a close interrelationship. It is shown that the wetness index can be used as a quantitative indicator of the weathering degree of rocks. Moreover, wetness index simulate quantitatively the hydrologic condition of the local area. Therefore, it is anticipated that wetness index can be used as the data that calculate the weathering speed of rock and weathering grade in the study of weathering sensitivity of rock.
TBM (Tunnel boring machine)은 터널 굴착 과정에서 여러 디스크 커터를 이용하여 암석을 절삭한다. 디스크 커터는 암석과의 지속적인 접촉과 마찰로 인해 마모된다. 디스크 커터의 표면이 마모되면 절삭 능력이 감소하고 굴착 효율이 떨어진다. 암석의 마모성은 디스크 커터 마모에 큰 영향을 미친다. 높은 마모도를 가진 암석은 커터에 더 큰 마모를 일으키며, 이는 디스크 커터의 수명을 단축시킨다. 세르샤 마모지수(Cerchar abrasivity index, CAI)는 암석의 마모성을 평가하는데 널리 사용되는 지표로 CAI는 암석의 마모특성을 나타내며, 디스크 커터의 수명과 성능 예측에 필수적인 요소로 인식되고 있다. 본 연구의 목적은 암석의 강도, 암석학적 특성과 선형회귀, 머신러닝 기법을 이용하여 CAI를 효과적으로 추정하는 새로운 방법을 개발하는 것이다. 문헌 조사를 통해 CAI, 일축압축강도, 압열인장강도, 등가석영함량이 포함된 데이터베이스를 구축하고 파생변수를 추가하였다. 통계적 유의성과 다중공선성을 고려하여 다중선형회귀분석을 위한 입력변수를 선정하였고, 머신러닝 모델의 입력변수는 변수중요도 분석을 통해 선정하였다. 머신러닝 예측모델 중 Gradient Boosting 모델의 예측 성능이 가장 높게 나타나 최적의 CAI 예측 모델로 선정되었다. 마지막으로 본 연구에서 도출한 다중선형회귀분석과 Gradient Boosting 모델의 예측 성능을 선행연구들의 CAI 예측모델과 비교하여 연구 결과의 타당성을 확인하였다.
본 연구에서는 Gehring, CSM, NTNU 모델을 이용한 디스크 커터 수명 예측 방법과 각 모델이 가지는 특징을 살펴보았다. 디스크 커터 수명에 크게 영향을 주는 요소인 관입깊이, 암석의 일축압축강도, 마모지수의 변화가 각각의 예측 모델들에 미치는 영향을 분석하였다. 디스크 커터 수명은 1회전당 관입깊이에 선형적으로 증가하였고, 일축압축강도의 증가에 따라 감소하는 경향을 보였다. 마모지수인 CAI 값이 증가함에 따라 Gehring과 CSM 모델에서의 디스크 커터 수명은 감소하였으나, CLI 값이 증가할수록 NTNU 모델의 디스크 커터 수명은 증가하는 경향을 보였다. 그리고 실제 현장 자료를 이용하여 디스크 커터 수명을 상호 비교하였다.
이 논문은 지구의 나이를 알기 위한 초기의 다양한 시도를 간략히 소개하고, 운석의 납동위원소 연대측정으로 처음으로 지구의 나이가 $4,550{\pm}70Ma$임을 밝힌 Patterson (1956)의 연구를 재조명한다. 태양계 초기의 진화과정은 성운가스가 식으면서 응축되어 만들어지는 고체입자 -> 이들 입자들이 서로 들러붙어 커지는 첨합과정을 통하여 행성 크기의 물체가 생성되는 것으로 생각되고 있다. 또한 이때 생긴 원시지구가 화성 크기의 물체와 충돌하면서 그 잔해가 달을 만들었다고 생각되고 있다. 이 일련의 과정에서 지구가 생성된 시기를 꼭 집어 말하기 힘들긴 하나, 현재 지구는 이 충돌의 직접적인 결과로 생각할 수 있기 때문에 이 충돌시기를 지구의 나이로 정할 것을 제안한다. 기존 연구를 고려하면 충돌시기는 태양계에서 가장 먼저 만들어진 운석물질의 나이(즉, 태양계의 나이) $4567.30{\pm}0.16Ma$와 지구와 달 암석에서 가장 오래된 나이 $4,456{\pm}40Ma$ 사이로 개략적으로 제한될 수 있다. 이 충돌시기는 태양계 초기 행성 크기의 물체가 만들어지는 시간간격을 밝히고, 충돌 이후 생성된 지구와 달의 마그마 바다의 열 역사를 규명하는데 매우 중요하기 때문에, 앞으로 보다 정확한 충돌시기를 측정하려는 노력이 요구된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.