• Title/Summary/Keyword: CAI(Controlled Auto ignition)

Search Result 15, Processing Time 0.019 seconds

The Experimental Study on Characteristics of Valve System using Hole Type Valve Lift Sensor (밸브 거동 특성 파악을 위한 hole 센서의 적용에 관한 실험적 연구)

  • Moon, Gun-Feel;Lee, Yong-Gyu;Lee, Seong-Jin;Choi, Kyo-Nam;Jeong, Dong-Soo;Park, Sung-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.80-86
    • /
    • 2008
  • Recently, controlled auto ignition(CAI) in gasoline engines are drawing more attentions due to its extremely low level of NOx emissions and potentials in lowering the fuel consumption rate. The one of the key techniques for realizing CAI combustion in engines is the control of valve system. Since the valve linkage system with higher complexity, or even earn-less valve systems, such as electro-hydraulic and electro-magnetic system, are adopted in CAI engines, it is not easy to estimate the valve lift profile from earn profiles. Therefore new measurement techniques for valve lift in CAI engines have been tried and tested. In this paper, hole type valve lift sensor was developed and tested to check the applicability in CAI engines. The valve lifts could be obtained from the sensor signal, which depends on the distance from the sensor to magnet attached to valve. Various engine speeds, ranging from 2,000 to 6,000 rpm, and valve lifts, maximum up to 9.7 mm, were tested. It was found that the sensor output for valve lift had accuracy of 98% in comparison with the basic specifications of valve lift through improvements of sensor driving circuit.

EFFECT OF VALVE TIMING AND LIFT ON FLOW AND MIXING CHARACTERISTICS OF A CAI ENGINE

  • Kim, J.N.;Kim, H.Y.;Yoon, S.S.;Sa, S.D.;Kim, W.T.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.687-696
    • /
    • 2007
  • To increase the reliability of auto-ignition in CAI engines, the thermodynamic properties of intake flow is often controlled using recycled exhaust gases, called internal EGR. Because of the internal EGR influence on the overall thermodynamic properties and mixing quality of the gases that affect the subsequent combustion behavior, optimizing the intake and exhaust valve timing for the EGR is important to achieve the reliable auto-ignition and high thermal efficiency. In the present study, fully 3D numerical simulations were carried out to predict the mixing characteristics and flow field inside the cylinder as a function of valve timing. The 3D unsteady Eulerian-Lagrangian two-phase model was used to account for the interaction between the intake air and remaining internal EGR during the under-lap operation while varying three major parameters: the intake valve(IV) and exhaust valve(EV) timings and intake valve lift(IVL). Computational results showed that the largest EVC retardation, as in A6, yielded the optimal mixing of both EGR and fuel. The IV timing had little effect on the mixing quality. However, the IV timing variation caused backflow from the cylinder to the intake port. With respect to reduction of heat loss due to backflow, the case in B6 was considered to present the optimal operating condition. With the variation of the intake valve lift, the A1 case yielded the minimum amount of backflow. The best mixing was delivered when the lift height was at a minimum of 2 mm.

A Study on the Auto-ignition Combustion Characteristics of CH4-Air Pre-mixtures in Constant Volume Combustion Chamber (정적연소기를 이용한 메탄-공기 예혼합기의 자발화 연소특성에 관한 연구)

  • Lee, Jin-Soo;Lee, Hae-Chul;Cha, Kyung-Ok;Jung, Dong-Soo
    • Journal of ILASS-Korea
    • /
    • v.10 no.2
    • /
    • pp.41-47
    • /
    • 2005
  • Exhaust gas emissions from internal combustion engines are one of the major sources of air pollution. And. it is extremely difficult to increase gasoline engine efficiency and to reduce NOx and PM(particulate matter) simultaneously in diesel combustion. This paper offers some basic concepts to overcome the above problems. To solve the problems, a recommended technique is CAI(controlled auto-ignition) combustion. In this paper. internal EGR(exhaust gas recirculation) effect is suggested to realize CAI combustion. An experimental study was carried out to achieve CAI combustion using homogeneous premixed gas mixture in the constant volume combustion chamber(CVCC). A flame trap was used to simulate internal EGR effect and to increase flame propagation speed in the CVCC. Flame propagation photos and pressure signals were acquired to verify internal EGR effect. Flame trap creates high speed burned gas jet. It achieves higher flame propagation speed due to the effect of geometry and burned gas jet.

  • PDF

Performance and Emission Characteristics of Compression Ignition Gasoline Engine (압축점화 가솔린기관의 성능 및 배기특성)

  • Kim, Hong-Sung;Kim, Mun-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.1007-1014
    • /
    • 2003
  • This work deals with a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel is injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector is water-cooled by a specially designed coolant passage. Investigated are the engine performance and emission characteristics under the wide range of operating conditions such as 32 to 63 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, and 150 to 18$0^{\circ}C$ in the inlet air temperature. The compression ignition gasoline engine can be achieved that the ultra lean-burn with self-ignition of gasoline fuel by heating inlet air. For example. the allowable lean limit of air-fuel ratio is extended until 63 at engine speed of 1000 rpm and inlet air temperature of 17$0^{\circ}C$. It can be achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide had been significantly reduced by CAI combustion compared with conventional spark ignition engine.

A Study on Combustion Characteristics of Pre-mixed $CH_4$-air by Flame Trap (플레임트랩에 의한 메탄-공기 예혼합기의 연소특성에 관한 연구)

  • Kim, Deok-Ho;Lee, Jai-Hyo;Choi, Su-Jin;Cho, Gyu-Back;Jeong, Dong-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.22-28
    • /
    • 2005
  • Exhaust gas emissions from internal combustion engines are one of the major sources of air pollution. And, it is extremely difficult to increase gasoline engine efficiency and to reduce $NO_X$ and PM(particulate matter) simultaneously in diesel combustion. This paper offers some basic concepts to overcome the above problems. To solve the problems, a recommended technique is CAI(controlled auto-ignition) combustion. In this paper, a flame trap was used to simulate internal EGR(exhaust gas recirculation) effect. An experimental study was carried out to find combustion characteristics using homogeneous premixed gas mixture in the constant volume combustion chamber(CVCC). Flame propagation photos and pressure signals were acquired to verify the flame trap effect. The flame trap creates high speed burned gas jet. It achieves higher flame propagation speed and more stable combustion due to the effect of geometry and burned gas jet.