• Title/Summary/Keyword: CAGE Model

Search Result 141, Processing Time 0.026 seconds

Analysis of submerging characteristics and stability of the model submersible fish cage operated by buoyancy control (부력 제어식 가두리 모형의 부침 특성 및 안정성 해석)

  • Lee, Gun-Ho;Cha, Bong-Jin;Jeong, Seong-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.1
    • /
    • pp.40-50
    • /
    • 2012
  • This study aims to analyze the performance of a submersible fish cage which was designed for developing an economical cage system can be applied in korean aquaculture environment easily. To analyze the performance of the designed cage a model test was carried out. In the test, inclination changes of the upper frame and mooring tensions of model cage were measured during the submerging and surfacing motion in still water and wave condition (period: 2s, wave height: 0.1, 0.2, 0.3m). As a result, in the still water condition the model cage kept horizontal balance and inclination degree of the upper frame was about $1^{\circ}$. In the wave condition, the model cage showed bilateral symmetric up-and-down motion but the average inclination degree of the upper frame was about $0^{\circ}$. When the model cage reached at a depth of 1m, the up-and-down motion of the cage was decreased by 12% compared with that of at the surface (period 2s, height 0.3m). In the same wave condition, the maximum and average line tension under the bottom position were about 8% and 11% respectively compared with that of at surface.

Stability Analysis of Mooring Lines of a Submersible Fish Cage System Using Numerical Model

  • Kim, Tae-Ho;Hwang, Kyu-Serk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.690-699
    • /
    • 2011
  • A numerical model analysis was performed to analyze the stability of the mooring lines of an automatic submersible fish cage system in waves and currents. The fish cage system consisted of a 12-angled rigid frame, net cage, cover net, 12 upper floats, 12 tanks(for fixed and variable ballast), mooring lines, anchors, and a control station. Simulations were performed with the cage at the surface of the water and at a depth of 20 m. A Morison equation type model was used for simulations of the system in two configurations. The force parameters described both regular and random waves, with and without currents, and their values were input to the model. Mooring tension calculations were conducted on the mooring lines, grid lines and lower bridle lines of the cage. The stability of the mooring lines was checked under both static and dynamic conditions.

Estimation of vertical and horizontal spreading force of the towing cage for transporting the live fish by model test and simulation (모형실험과 시뮬레이션을 통한 활어 이송용 예인 가두리의 수직 및 수평 전개력 추정)

  • Park, Subong;Lee, Chun Woo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.2
    • /
    • pp.176-184
    • /
    • 2014
  • Nowadays, consumption of fisheries products is increasing. There are several factors, one of which is a quantitative development through aquaculture. Another factor is an increase qualitative consumption of fish which require that fish be supplied alive. This requires a lot of technical effort to transport the live fish that have low survival rate (c.f. tuna and mackerel) in coastal waters and in the open sea. To develop a towing cage for transporting the live fish, model test in a circulate water channel and simulation by computer tool were carried out. In order to spread vertically, floats were attached at the upper part of the cage, and iron chains attached at the lower part of the cage. For horizontal spreading, kites were attached on the cage. The tension and spreading performance of the cage were measured. The result shows that the tension and reduction ratio of inside volume of the cage were tended to increase with increased towing speeds. The suitable operation condition in towing cage was 1.0 m/s towing speeds with vertical spreading force 8.7 kN, horizontal spreading force 5.6 kN; in this case the reduction ratio of inside volume of the cage was estimated as 25%.

Economic Feasibility of Culture Using the Copper Alloy Net Cage and the Profit Model of Fish Farm on Yellowtail, Seriola quinqueradiata (동합금 가두리망 방어양식의 경제성과 수익구조)

  • Hwang, Jin-Wook
    • The Journal of Fisheries Business Administration
    • /
    • v.52 no.2
    • /
    • pp.33-54
    • /
    • 2021
  • This study is aimed to analyze the economic feasibility of yellowtail culture using the copper alloy net cage in Gyeongsangbuk-do. First of all, in order to evaluate the copper alloy net cage on yellowtail culture, I review the trend on the yellowtail culture industry and research the concept of copper alloy net cage. The copper-alloy net cage is now recognized as an advantages of its system stability, recycling, antibiosis and food safety. The results were summarized as follows: first, there was significant meaning of the profit model of yellowtail culture by the price difference. Second, I analyzed in the economic feasibility of yellowtail culture using the copper alloy net cage, internal rate of return (IRR) was 51.58%, a benefit-cost ratio was shown to be 2.27 and net present value (NPV) was 1,087,337 thousand won, which indicates the economic feasibility of yellowtail culture using the copper alloy net cage is profitable. Finally, in order to improve the economic valuation, it is necessary to focus more on the developing of technology and cost reduction strategy on the copper alloy net cage.

Simulation of fish reaction against cage net with an individual fish behaviour model (개체기반 어군행동모델을 이용한 가두리망 내의 양식 어류의 유영행동 시뮬레이션)

  • Hwang, Bo-Kyu;Shin, Hyeon-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.4
    • /
    • pp.419-427
    • /
    • 2011
  • Simulation technique for the fish behavior was applied to estimate fish school movement in the cage net. Individual-based fish behavior model (Huth and Wessel, 1991) was evaluated in a free area to understand the characteristics for the model, and the movement in the cage net was simulated by defining the fish reaction against the displacement of cage net. As a result, the distance to the net was not considerably changed and the space among fishes in cage net was slightly decreased by reducing the net space. Swimming area was, however, significantly affected by changing the net space and the relationship between swimming area and net displacement was theoretically estimated as y=-0.21x+1.02 ($R^2$=0.96). these results leads the conclusion that individual-based model was appropriated to describe the fish school reaction in the cage net and be able to use for evaluating the influence on cultured fish.

The Development of Simulation Model for Calculating Hoisting Time of Double-Cage Construction Lift in Supertall Building Construction (Double-Cage 건설용 리프트의 양중시간 산정을 위한 시뮬레이션 모델 개발)

  • Kim, Wansoub;Lee, Dongmin;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.64-65
    • /
    • 2016
  • According to the recent increase in the height of supertall buildings, construction lift became one of most important equipment for vertical transportation of resources. However, increase in lifting load during peak time in which the resources are concentrated often causes a risk of construction delay. This study suggests a concept of Double-Cage construction lift, which is a lift with two cages attached together allowing transportation of resources on two consecutive work floors simultaneously. The aim of this study is to present a simulation model suitable for calculating hoisting time of Double-Cage construction lift. The proposed model is expected to be utilized when applying Double-cage construction lift for its efficient operation and management.

  • PDF

Hydrodynamics of submersible aquaculture cage system using numerical model

  • Kim, Tae-Ho;Fredriksson, David W.;Decew, Judson
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.1
    • /
    • pp.46-56
    • /
    • 2008
  • A numerical model analysis was performed to analyze the motion and mooring tension response of submersible fish cage systems in irregular waves and currents. Two systems were examined: a submersible cage mooring with a single, high tension mooring and the same system, but with an additional three point mooring. Using a Morison equation type model, simulations of the systems were conducted with the cage at the surface and submerged. Irregular waves(JONSWAP spectrum) with and without a co-linear current with a magnitude of 0.5m/s were simulated into the model as input parameters. Surge, heave and pitch dynamic calculations were made, along with tension responses in the mooring lines. Results were analyzed in both the time and frequency domains and linear transfer functions were calculated.

Analysis of the Bird-cage Receiver Coil of a MRI System Employing a Equivalent Circuit Model Based on a Transmission Matrix (전송행렬 기반 등가 회로 모델을 이용한 자기공명영상 장치용 새장형 수신 코일 해석)

  • Kim, Hyun Deok
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.7
    • /
    • pp.1024-1029
    • /
    • 2017
  • A novel analytic solution has been derived for the bird-cage receiver coil of a magnetic resonance imaging (MRI) system, which is widely used in 3-dimensional medical imaging, by transforming the coil into an equivalent circuit model by using a transmission matrix-based circuit analysis. The bird-cage coil composed of N legs is divided into a cell for which input impedance is to be analyzed and the remaining N-1 cells, and then a transmission matrix corresponding to the N-1 cells is converted into a circuit to transform the 3-dimensional bird-cage coil into the 2-dimensional equivalent circuit model, which is suitable to derive the analytic solution for the input impedance. The proposed method derives directly the analytic solution for the input impedance at an arbitrary point of the coil unlike the conventional analytic solution of a bird-cage coil, so that it can be used not only for resonance frequency calculations but also for various coil characteristics analyses. Since the analytic solution agreed well with the results of computational simulations, it can be useful for the impedance matching of a coil and the analysis and the design of a multi-tune bird-cage coil.

A study on the placing cage stability using FEM (FEM을 이용한 Cage 삽입 시 안정성에 관한 연구)

  • Park, Ki-Hoon;Park, Jeong-Ho;Cho, Woo-Seok;Kim, Hyun-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1364-1367
    • /
    • 2003
  • These days, spinal interbody arthrodesis using fusion cage is very popular. The cage used for the spinal interbody arthrodesis is mainly inserted from the posterior of the spine. Accordingly, there could possibly occur damages at posterior and results in instability of structure. Moreover, one or two cages are inserted depending on the patients. In this study, it is attempted to evaluate the stability quantitatively by comparing two cases where one and two cages are inserted. For this purpose, a very fine 3-dimensional finite element model of vertebra is generated from the MRI data. From this vertebra model, two models are made: one with one cage and the other with two cages. Finally, finite element analys is performed for these two models and both of the mechanical behaviors are examined In addition, the effect on the stability is evaluated and compared quantitatively.

  • PDF

The MPPT Control Method of the PMSG Wind Generation System using the Turbine Model with a Squirrel Cage Induction Motor (농형 유도기 터빈 모델을 이용해 구현한 영구자석 동기기 풍력발전 시스템의 MPPT 제어)

  • Lee, Joon-Min;Kim, Dong-Hwa;Shin, Hye-Su;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.231-236
    • /
    • 2012
  • This paper presents the MPPT(Maximum Power Point Tracking)control method of the PMSG wind generation system using the turbine model with a squirrel cage induction motor. The torque of squirrel cage induction turbine model is controlled by mathematization of speed characteristics of real blade. In this paper, maintenance and cost issues into consideration, except for previous method using information of the velocity of the wind speed sensor, the algorithm is presented. The algorithm is controlled by tracking the optimal point, the generator speed and maximum grid power. The vector controls of the generator side converter and the grid side converter are controlled respectively to obtain maximum torque and regulate unity power factor. With Psim simulations and experiments, the efficiency of squirrel cage induction turbine model and the validity of control algorithm are verified.