• Title/Summary/Keyword: CAE simulation

Search Result 256, Processing Time 0.03 seconds

Development of a CAE Middleware and a Visualization System for Supporting Interoperability of Continuous CAE Analysis Data (연속해석 데이터의 상호운용성을 지원하는 CAE 미들웨어와 가시화 시스템의 개발)

  • Song, In-Ho;Yang, Jeong-Sam;Jo, Hyun-Jei;Choi, Sang-Su
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.2
    • /
    • pp.85-93
    • /
    • 2010
  • This paper proposes a CAE data translation and visualization technique that can verify time-varying continuous analysis simulation in a virtual reality (VR) environment. In previous research, the use of CAE analysis data has been problematic because of the lack of any interactive simulation controls for visualizing continuous simulation data. Moreover, the research on post-processing methods for real-time verification of CAE analysis data has not been sufficient. We therefore propose a scene graph based visualization method and a post-processing method for supporting interoperability of continuous CAE analysis data. These methods can continuously visualize static analysis data independently of any timeline; it can also continuously visualize dynamic analysis data that varies in relation to the timeline. The visualization system for continuous simulation data, which includes a CAE middleware that interfaces with various formats of CAE analysis data as well as functions for visualizing continuous simulation data and operational functions, enables users to verify simulation results with more realistic scenes. We also use the system to do a performance evaluation with regard to the visualization of continuous simulation data.

Application of Birefringence CAE in Mould Design of Optic Lens Injection Molding Process (광학렌즈 사출성형금형 설계에 있어서 CAE기술의 활용)

  • Yamanoi, Mikio;Kwak, Tae-Soo;Jung, Jong-Kyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.1-6
    • /
    • 2012
  • This study is focused on simulation technology in injection molding process for plastic optic lenses. The CAE program, $3D-TIMON^{TM}$ is used for the injection molding simulation with O-PET resin material. The design for different gate shape and runner layout has been under review by CAE simulation results. Moreover, the prediction of birefringence and polarized light in injection molded optic lenses has been tested by the CAE Program. The simulation results have been expected to effectively use in the design of injection molding mould.

ULTRASIM$^R$ Integrative Simulation Technology on the Development of Automotive Plastic Parts

  • Jae, Hyung-Ho;De Matos, Zeidam Rachib;Kim, Min-Oug;Glaser, Stefan;Wuest, Andreas
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.132-137
    • /
    • 2012
  • To enhance the CAE accuracy, the definition of material behavior is one of key influence on the result. In case of plastic material with fiber reinforcement, the anisotropic material behavior should be taken into account to increase of CAE accuracy. BASF has developed an innovative CAE tool, ULTRASIM$^R$, which is capable of generating material models of thermoplastic materials for structural simulation. ULTRASIM$^R$, not only the glass fiber orientation effect, but also the weld line effect, tensile-compression anisotropy, strain rate effect are combined in a non-linear material law, which will be evaluated in a unique failure criterion, thus resulting in an highly accurate CAE approach.

  • PDF

Development of CAE Service Platform Based on Cloud Computing Concept (클라우드 컴퓨팅기반 CAE서비스 플랫폼 개발)

  • Cho, Sang-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.31 no.4
    • /
    • pp.218-223
    • /
    • 2011
  • Computer Aided Engineering (CAE) is very helpful field for every manufacturing industry including foundry. It covers CAD, CAM, and simulation technology also, and becomes as common sense in developing new products and processes. In South Korea, more than 600 foundries exist, and their average employee number is less than 40. Moreover, average age of them becomes higher. To break out these situations of foundry, software tools can be effective, and many commercial software tools had already been introduced. But their high costs and risks of investment act as difficulties in introducing the software tools to SMEs (Small and Medium size Enterprise). So we had developed cloud computing platform to propagate the CAE technologies to foundries. It includes HPC (High Performance Computing), platforms and software. So that users can try, enjoy, and utilize CAE software at cyber space without any investment. In addition, we also developed platform APIs (Application Programming Interface) to import not only our own CAE codes but also 3rd-party's packages to our cloud-computing platforms. As a result, CAE developers can upload their products on cloud platforms and distribute them through internet.

ViP: A Practical Approach to Platform-based System Modeling Methodology

  • Um, Jun-Hyung;Hong, Sung-Pack;Kim, Young-Taek;Chung, Eui-Young;Choi, Kyu-Myung;Kong, Jeong-Taek;Eo, Soo-Kwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.89-101
    • /
    • 2005
  • Research on highly abstracted system modeling and simulation has received a great deal of attention as of the concept of platform based design is becoming ubiquitous. From a practical design point of view, such modeling and simulation must consider the following: (i) fast simulation speed and cycle accuracy, (ii) early availability for early stage software development, (iii) inter-operability with external tools for software development, and (iv) reusability of the models. Unfortunately, however, all of the previous works only partially addresses the requirements, due to the inherent conflicts among the requirements. The objective of this study is to develop a new system design methodology to effectively address the requirements mentioned above. We propose a new transaction-level system modeling methodology, called ViP (Virtual Platform). We propose a two-step approach in the ViP method. In phase 1, we create a ViP for early stage software development (before RTL freeze). The ViP created in this step provides high speed simulation, lower cycle accuracy with only minor modeling effort.(satisfying (ii)). In phase 2, we refine the ViP to increase the cycle accuracy for system performance analysis and software optimization (satisfying (i)). We also propose a systematic ViP modeling flow and unified interface scheme based on utilities developed for maximizing reusability and productivity (satisfying (ii) and (iv)) and finally, we demonstrate VChannel, a generic scheme to provide a connection between the ViP and the host-resident application software (satisfying (iii)). ViP had been applied to several System-on-a-chip (SoC) designs including mobile applications, enabling engineers to improve performance while reducing the software development time by 30% compared to traditional methods.

Development of CAE Data Translation Technique for a Virtual Reality Environment (가상현실 환경을 위한 해석데이터 변환 기술 개발)

  • Song, In-Ho;Yang, Jeong-Sam;Jo, Hyun-Jei;Choi, Sang-Su
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.5
    • /
    • pp.334-341
    • /
    • 2008
  • Computer-aided engineering (CAE) analysis is considered essential for product development because it decreases the simulation time, reduces the prototyping costs, and enhances the reusability of product parts. The reuse of quality-assured CAE data has been continually increasing due to the extension of product lifecycle management; PLM, which is widely used, shortens the product development cycle and improves the product quality. However, less attention has been paid to systematic research on the interoperability of CAE data because of the diversity of CAE data and because the structure of CAE data is more complex than that of CAD data. In this paper, we suggest a CAE data exchange method for the effective sharing of geometric and analysis data. The method relies on heterogeneous CAE systems, a virtual reality system, and our developed CAE middleware for CAE data exchange. We also designed a generic CAE kernel, which is a critical part of the CAE middleware. The kernel offers a way of storing analysis data from various CAE systems, and, with the aid of a script command, enabling the data to be translated for a different system. The reuse of CAE data is enhanced by the fact that the CAE middle-ware can be linked with a virtual reality system or a product data management system.

Vibration Analysis of a Nano Imprinting Stage Using CAE (CAE를 이용한 나노 임프린팅 스테이지의 진동 해석)

  • Lee, Kang-Wook;Lee, Jae-Woo;Lee, Sung-Hoon;Lim, Si-Hhyung;Jung, Jae-Il;Yim, Hong-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.579-584
    • /
    • 2008
  • A nano-imprinting stage has been widely used in various fields of nanotechnology. In this study, an analysis method of a nano-imprinting stage machine using FEM and flexible multi-body vibration has been presented. The simulation using CAE for the imprinting machine is to analyze vibration characteristics of 3-axis nano-imprinting stage and 4-axis nano-imprinting stage. Structural components such as the upper plate have been modeled with finite elements to analyze flexibility effects during the precision stage motion. In this paper flexible multi-body dynamic simulation is executed to support robust design of the precision stage mechanism.

  • PDF

Comparison of CAE Flow Analysis and Practical Molding on Elastomer Injection Molding (엘라스토머 사출성형시 CAE 유동해석과 실제 성형품의 비교)

  • Han S.R.;Kim J.H.;Jeon S.G.;Lee G.H.;Jeong Y.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.375-376
    • /
    • 2006
  • Thermoplastic elastomer(TPE) can be molded by conventional injection molding. Therefore TPE injection molding could be analyzed by commercial flow analysis software. However there are a little of gaps on CAE simulation results and practical molding. In this study, the properties of TPE were measured and applied to CAE simulation for comparing the simulation flow pattern and real flow pattern. The pattern that was controlled by injection time was match. The pattern that was controlled by injection stroke and rate was not match.

  • PDF

Acoustic performance of industrial mufflers with CAE modeling and simulation

  • Jeon, Soohong;Kim, Daehwan;Hong, Chinsuk;Jeong, Weuibong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.935-946
    • /
    • 2014
  • This paper investigates the noise transmission performance of industrial mufflers widely used in ships based on the CAE modeling and simulation. Since the industrial mufflers have very complicated internal structures, the conventional Transfer Matrix Method (TMM) is of limited use. The CAE modeling and simulation is therefore required to incorporate commercial softwares: CATIA for geometry modeling, MSC/PATRAN for FE meshing and LMS/SYSNOISE for analysis. Main sources of difficulties in this study are led by complicated arrangement of reactive elements, perforated walls and absorption materials. The reactive elements and absorbent materials are modeled by applying boundary conditions given by impedance. The perforated walls are modeled by applying the transfer impedance on the duplicated node mesh. The CAE approach presented in this paper is verified by comparing with the theoretical solution of a concentric-tube resonator and is applied for industrial mufflers.