• Title/Summary/Keyword: CADU

Search Result 3, Processing Time 0.019 seconds

COMS CADU DATA GENERATION FOR COMS IMPS TEST

  • Seo, Seok-Bae;Ahn, Sang-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.88-91
    • /
    • 2008
  • The COMS IMPS (Communication Ocean and Meteorological Satellite IMage Pre-processing Subsystem) is developed for image pre-processing of COMS. For a test of the COMS IMPS, 7 support software are developed in KARI GS using simulated MI/GOCI WB (Wide-Band) data; COMS Fill Adder, MI (Meteorological Imager) CADU generator, GOCI (Geostationary Ocean Colour Imager) CADU generator, COMS CADU combiner, MI SD (Sensor Data) analyzer, GOCI SD analyzer, and COMS DM (Decomposition Module) test harness. This paper explains functions of developed support software and the COMS IMPS test using those software.

  • PDF

PERFORMING OF SOC DATS INTERFACE TEST WITH MODEM/BB

  • Park, Durk-Jong;Hyun, Dae-Hwan;Koo, In-Hoi;Ahn, Sang-Il;Kim, Eun-Kyou
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.64-66
    • /
    • 2006
  • DATS will connect with IMPS and LHGS to perform the reception of sensor data and the transmission of user's meteorological data, LRIT and HRIT. MODEM/BB will perform the de-commutation of received sensor data as MI and GOCI raw data according to VCID before sending them to MI and GOCI IMPS, respectively. Especially, MODEM/BB in SOC needs to be connected to six clients that consist of the primary and backup IMPS of MSC, KOSC and SOC. On the other hand, LRIT and HRIT delivered from LHGS are encoded as VITERBI and modulated by MODEM/BB. Considering sensor data transmitted from COMS, the assumed format and size of CADU are described in this paper. Finally, results related to the status of received LRIT and HRIT by frame synchronizer in user station are also described.

  • PDF

Communication Data Format Design for LEO Satellite with Packet Utilization Standard (Packet Utilization 개념을 이용한 저궤도 위성의 데이터 통신 포맷 설계)

  • Lee, Na-Young;Lee, Jin-Ho;Suk, Byong-Suk
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.2
    • /
    • pp.13-17
    • /
    • 2008
  • The conventional telemetry system of Korean low-earth orbiting satellites has certain limitations in accommodating various missions. As the payload becomes complex, it requires very complicated operational concepts in terms of telemetry. With the current design, the telemetry formats have to be rebuilt whenever new payloads or operation concepts are involved, and many constraints in operation shall be produced due to the lacks of its flexibility. As the capability and performance of a satellite have been improved, the communication structure of the satellite should be improved to gather more telemetry data. For the efficiency of data handling, it is necessary to change the grid based telemetry system in which the downlink interval and types for telemetry was limited. Comparing the fixed data map such as grid type, the packet based telemetry system can be operated as flexible and various types of packet can be designed such as the dump packet and the event packet. The sequence of the packets can be modified or newly defined to manage the massive satellite state of health data. In this paper, a new strategy for the telemetry development partially derived from PUS (Packet Utilization Standard) of European Space Agency, which provides enhanced features for the accommodation of payloads & operational requirements, is presented.

  • PDF