• Title/Summary/Keyword: CAD software

Search Result 586, Processing Time 0.024 seconds

A New Approach to CAD/CAM Systems Data Exchange Using Plug-in Technology

  • Chernopyatov Y.A.;Chung W.j.;Lee C.M.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.8-13
    • /
    • 2005
  • Interoperability has been the problem of CAD/CAM systems. Starting from 1980's, national and international organizations have addressed the issue through development and release of standards for the exchange of geometric and nongeometric design data. To CAD/CAM vendors, the task of interpreting and implementing these standards falls into their products. This task is a balancing action between users' needs, available development resources, and the technical specifications of standards. This paper explores an area of CAD/CAM systems development, particularly the implementation of the effective exchange files translators'. A new approach is introduced, which proposes to enclose all the translation operations concerning each exchange format to a separate DLL, thus making a 'plug-in.' Then, this plug-in could be used together with the CAD/CAM system or with specialized translation software. This approach allows to create new translators rapidly and to gain the reliable, high-efficiency, and reusable program code. The second part of the paper concerns the possible problems of translators' development. These difficulties often come from the exchange standards' misunderstanding or ambiguity in standards. All examples come from the authors' practice experiences of dealing with CAD/CAM systems.

Development of Graphical Solution for Computer-Assisted Fault Diagnosis: Preliminary Study (컴퓨터 원용 결함진단을 위한 그래픽 솔루션 개발에 관한 연구)

  • Yoon, Han-Bean;Yun, Seung-Man;Han, Jong-Chul;Cho, Min-Kook;Lim, Chang-Hwy;Heo, Sung-Kyn;Shon, Cheol-Soon;Kim, Seong-Sik;Lee, Seok-Hee;Lee, Suk;Kim, Ho-Koung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.36-42
    • /
    • 2009
  • We have developed software for converting the volumetric voxel data obtained from X-ray computed tomography(CT) into computer-aided design(CAD) data. The developed software can used for non-destructive testing and evaluation, reverse engineering, and rapid prototyping, etc. The main algorithms employed in the software are image reconstruction, volume rendering, segmentation, and mesh data generation. The feasibility of the developed software is demonstrated with the CT data of human maxilla and mandible bones.

A Study on the Structural Analysis & Design Optimization Using Automation System Integrated with CAD/CAE (통합된 CAD/CAE 자동화 System을 이용한 구조 강도 해석 및 설계 최적화에 관한 연구)

  • Won June-Ho;Kim Jong-Soo;choi Joo-Ho;Yoon Jong-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.55-62
    • /
    • 2005
  • In this paper, a CAB/CAE integrated optimal design system is developed, in which design and analysis process is automated using CAD/CAE softwares, for a complicated model for which parametric modeling provided by CAD software is not possible. CAD modeling process is automated by using UG/OPEN API function and UG/Knowledge Fusion provided by Unigraphics. The generated model is transferred to the analysis code ANSYS in parasolid format. Visual DOC software is used for optimization. The system is developed for PLS(Plasma Lighting System), which is a next generation illumination system that is used to illuminate stadium or outdoor advertizing panel. The PLS system consists of more then 20 components, which requires a lot of human efforts in modeling and analysis. The analysis for PLS includes static load, wind load and impact load analysis. As a result of analysis, it is found that the most critical component is a tilt assembly, which links lower & upper body assembly. For more reliable analysis, experiment is conducted using MTS and compared with the Finite element analysis result. The objective in the optimization is to minimize the material volume under allowable stresses. The design variables are three parameters in the tilt assembly that are chosen to be the most sensitive in stress values of twelve parameters. Gradient based method and RSM(Response Surface Method) are used for the algorithm and the results are compared. As a result of optimization, the maximum stress is reduced by 57%.

  • PDF

A Framework for the Computer-aided Shop Drawing (철근 배근시공도 설계 자동화 프레임워크)

  • Maeng, Seung-Ryol;Gong, Heon-Taek
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.556-565
    • /
    • 2009
  • In this paper, we propose a CAD software framework to automatically generate a shop drawing. Shop drawing is to draw the geometric figures representing an arrangement of steel bars for a concrete building on its structural design, based on its construction specifications and the design rules, and its well-formed process lead to be automated. A key point of the design automation is to minimize the user interactions by automatically recognizing the design specifications and to finally generate the shape of the geometric figures. The graphic pipeline of the proposed framework consists of four stages; a specification DB, specification extraction, binding, and rendering. To effectively extract all specifications only for a figure from the DB and bind them to its shape, we use a hierarchical approach; the specifications are classified into three common, structural, and figure classes, and each attribute is extracted in design phases. Based on our framework, we implemented a specialized CAD for shop drawing using AutoCAD and could easily update it according to user's demands.

In vivo wear determination of novel CAD/CAM ceramic crowns by using 3D alignment

  • Aladag, Akin;Oguz, Didem;Comlekoglu, Muharrem Erhan;Akan, Ender
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.2
    • /
    • pp.120-127
    • /
    • 2019
  • PURPOSE. To determine wear amount of single molar crowns, made from four different restoratives, and opposing natural teeth through computerized fabrication techniques using 3D image alignment. MATERIALS AND METHODS. A total of 24 single crowns (N = 24 patients, age range: 18 - 50) were made from lithium disilicate (IPS E-max CAD), lithium silicate and zirconia based (Vita Suprinity CAD), resin matrix ceramic material (Cerasmart, GC), and dual matrix (Vita Enamic CAD) blocks. After digital impressions (Cerec 3D Bluecam, DentsplySirona), the crowns were designed and manufactured (Cerec 3, DentsplySirona). A dualcuring resin cement was used for cementation (Variolink Esthetic DC, Ivoclar). Then, measurement and recording of crowns and the opposing enamel surfaces with the intraoral scanner were made as well as at the third and sixth month follow-ups. All measurements were superimposed with a software (David-Laserscanner, V3.10.4). Volume loss due to wear was calculated from baseline to follow-up periods with Siemens Unigraphics NX 10 software. Statistical analysis was accomplished by Repeated Measures for ANOVA (SPSS 21) at = .05 significance level. RESULTS. After 6 months, insignificant differences of the glass matrix and resin matrix materials for restoration/enamel wear were observed (P>.05). While there were no significant differences between the glass matrix groups (P>.05), significant differences between the resin matrix group materials (P<.05) were obtained. Although Cerasmart and Enamic were both resin matrix based, they exhibited different wear characteristics. CONCLUSION. Glass matrix materials showed less wear both on their own and opposing enamel surfaces than resin matrix ceramic materials.

The Application of CAD/CAM in Dentistry (임상가를 위한 특집 1 - CAD/CAM 치과적 응용)

  • Choi, Ho-Sik;Moon, Ji-Eun;Kim, Sung-Hun
    • The Journal of the Korean dental association
    • /
    • v.50 no.3
    • /
    • pp.110-117
    • /
    • 2012
  • Dental computer-aided design (CAD) and computer-aided manufacturing (CAM) technology have rapidly progressed over the past 30 years. The technology, which can be used in the dental laboratory, the dental office and the form of production centers, has become more common in recent years. This technology is now applied to inlays, onlays, crowns, fixed partial dentures, removable partial denture frameworks, complete dentures, templates for implant installation, implant abutments, and even maxillofacial prostheses. Dentists and dental technicians, who want to use these techniques, should have certain basic knowledge about that. This article gives an overview of CAD/CAM technologies, histories and how it applies in prosthetic dentistry.

A study on the relationship between design and construction information for the Integrated Construction Information System (통합 건설 정보 시스템 구축을 위한 설계-공정 정보의 연계 방안에 관한 연구)

  • Yun Seok-Heon
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.107-114
    • /
    • 2002
  • As many software tools are used for managing construction projects, integration of their data and information is gradually becoming critical. Focusing on the integration of design and scheduling data, a generic scheduling information model is designed through this research, with appropriate consideration for past research results on construction information model and also object oriented CAD technology. In order to test the practical usage of this model, a small prototype system which can derive schedule information from the design information is implemented.

  • PDF

A Study on Web-based Collaborative CAD System (웹 기반 협동 CAD시스템에 관한 연구)

  • 윤보열;김응곤
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.364-367
    • /
    • 2000
  • As computer system and information/communication technology develop rapidly, nowadays CSCW(Computer Supported Collaborative Work) system appears, through which it is available to work on virtual space without any restriction of time and place. Most of Un systems depend on a special network and groupware. The systems of graphics and CAD are not so many because they are characterized by Hardware and application software. In this paper, we propose a web-based collaborative CAD system which can be jointly worked on Internet WWW being independent from any platforms. It can generate and handle objects easily using lava 3D, and it can transmit, print, and store them. The interactive work for designing objects can be also carried out through dialling with each other. This system is executed in the environment of Client/server. Clients connect to the server through lava applet on WWW. The server is implemented by lava application, and it consists of three components : connection manager which controls the contact to users, work manager which keeps viewing in concurrency and provides virtual work space sharing with others, and solid modeler which generates 3D object.

  • PDF

A Persistent Naming of Shells

  • Marcheix, David
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.125-137
    • /
    • 2006
  • Nowadays, many commercial CAD systems support history-based, constraint-based and feature-based modeling. Unfortunately, most systems fail during the re-evaluation phase when various kind of topological changes occur. This issue is known as "persistent naming" which refers to the problem of identifying entities in an initial parametric model and matching them in the re-evaluated model. Most works in this domain focus on the persistent naming of atomic entities such as vertices, edges or faces. But very few of them consider the persistent naming of aggregates like shells (any set of faces). We propose in this paper a complete framework for identifying and matching any kind of entities based on their underlying topology, and particularly shells. The identifying method is based on the invariant structure of each class of form features (a hierarchical structure of shells) and on its topological evolution (an historical structure of faces). The matching method compares the initial and the re-evaluated topological histories, and computes two measures of topological similarity between any couple of entities occurring in both models. The naming and matching method has been implemented and integrated in a prototype of commercial CAD Software (Topsolid).