• Title/Summary/Keyword: CAD/CAM (Computer Aided Design / Computer Aided Manufacture)

Search Result 22, Processing Time 0.024 seconds

The study on the shear bond strength of resin and porcelain to Titanium (티타늄에 대한 레진과 도재의 결합 강도에 관한 연구)

  • Park, Ji-Man;Kim, Yeong-Soon;Jun, Sul-Gi;Park, Eun-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • Statement of problem: Recently, titanium has become popular as superstructure material in implant dentistry because titanium superstructure can be easily milled by means of computer-aided design and manufacture (CAD/CAM) technique. But retention form such as nail head or bead cannot be cut as a result of technical limitation of CAD/CAM milling and bond strength between titanium and porcelain is not as strong as that of conventional gold or metal alloy. Purpose: The objective of this study was to evaluate the shear bond strength of three different materials: heat curing resin, composite resin, porcelain which were bonded to grade II commercially pure Titanium (CP-Ti). Material and methods: Thirty seven CP-Ti discs with 9 mm diameter, 10 mm height were divided into three groups and were bonded with heat curing resin (Lucitone 199), indirect composite resin (Sinfony), and porcelain (Triceram) which were mounted in a former with 7 mm diameter and 1 mm height. Samples were thermocycled for 1000 cycles at between $5-55^{\circ}C$. Shear bond strength (MPa) was measured with Instron Universal Testing Machine with cross head speed of 1 mm/min. The failure pattern was observed at the fractured surface and divided into adhesive, cohesive, and combination failure. The data were analyzed by one-way ANOVA and Scheffe's multiple range test (${\alpha}=0.05$). Results: Lucitone 199 ($17.82{\pm}5.13\;MPa$) showed the highest shear bond strength, followed by Triceram ($12.97{\pm}2.11\;MPa$), and Sinfony ($6.00{\pm}1.31\;MPa$). Most of the failure patterns in Lucitone 199 and Sinfony group were adhesive failure, whereas those in Triceram group were combination failure. Conclusion: Heat curing resin formed the strongest bond to titanium which is used as a CAD/CAM milling block. But the bond strength is still low compared with the bond utilizing mechanical interlocking and there are many adhesive failures which suggest that more studies to enhance bond strength are needed.

Fabrication of surveyed crown and repairing the artificial teeth for existing removable partial denture using digital technology: a case report (디지털 방식을 이용한 기존 국소의치 맞춤 보철 제작과 심미적인 인공치 수리 증례)

  • Ina Kim;Eunji Oh;Sang-Won Park;Hyun-Pil Lim;Kwi-dug Yun;Chan Park
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.40 no.2
    • /
    • pp.82-90
    • /
    • 2024
  • It often happens that a removable partial denture needs to be repaired due to tissue changes in the remaining alveolar ridge, fracture of the denture, or fracture of the abutment tooth. There are several advantages to retrofitting a customized surveyed crown under the existing RPD. Retrofitting a crown to the RPD decreases the economic burden to the patient and avoids the need for several appointments to fabricate a new RPD. It is difficult for artificial teeth used to repair dentures due to fractured natural teeth to have a shape similar to that of natural teeth, and to repair aesthetic artificial teeth, it is necessary to manufacture customized artificial teeth similar to the shape of each patient's teeth. Recently, CAD/CAM technology has been used to fabricate customized prosthetics on existing RPD to achieve high retention and fitness accuracy, and by manufacturing customized artificial teeth, more aesthetic and harmonious artificial tooth repair is possible. This is a case in which a denture was repaired using a digital method to fabricate a customized prosthesis on an existing partial denture and customized artificial teeth that mirrored the adjacent dentition, saving time and cost, simplifying the process, and achieving aesthetically and functionally satisfactory results.