• Title/Summary/Keyword: CAC.QoS

Search Result 64, Processing Time 0.023 seconds

QoS Improvement Analysis Call Admission Control(CAC) Algorithm based on 3GPP PBNM (3GPP 정책기반에서 호 수락 제어(CAC) 알고리즘 적용에 따른 QoS 성능개선)

  • Song, Bok-Sob;Wen, Zheng-Zhu;Kim, Jeong-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.4
    • /
    • pp.69-75
    • /
    • 2012
  • In this paper, to provide various services of QoS, and moreover applying traffic ratio to CAC(Call Admission Control) algorithm tested how long average data rate and the average packet delay time. When CAC algorithm is not applied, traffic mixture ratio is 1:1:4:4, the FTP Service 0.4, web services 0.6, streaming service 0.7, the packet delay requirements are not satisfied. On the other hand CAC Algorithm is applied, all the service of packet delay are satisfied with arrival rate. Therefore, we can make sure that applying of CAC of traffic control WWW, FTP, Video, VoIP can guarantee the various services of QoS.

Uniform Fractional Band CAC Scheme for QoS Provisioning in Wireless Networks

  • Rahman, Md. Asadur;Chowdhury, Mostafa Zaman;Jang, Yeong Min
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.583-600
    • /
    • 2015
  • Generally, the wireless network provides priority to handover calls instead of new calls to maintain its quality of service (QoS). Because of this QoS provisioning, a call admission control (CAC) scheme is essential for the suitable management of limited radio resources of wireless networks to uphold different factors, such as new call blocking probability, handover call dropping probability, channel utilization, etc. Designing an optimal CAC scheme is still a challenging task due to having a number of considerable factors, such as new call blocking probability, handover call dropping probability, channel utilization, traffic rate, etc. Among existing CAC schemes such as, fixed guard band (FGB), fractional guard channel (FGC), limited fractional channel (LFC), and Uniform Fractional Channel (UFC), the LFC scheme is optimal considering the new call blocking and handover call dropping probability. However, this scheme does not consider channel utilization. In this paper, a CAC scheme, which is termed by a uniform fractional band (UFB) to overcome the limitations of existing schemes, is proposed. This scheme is oriented by priority and non-priority guard channels with a set of fractional channels instead of fractionizing the total channels like FGC and UFC schemes. These fractional channels in the UFB scheme accept new calls with a predefined uniform acceptance factor and assist the network in utilizing more channels. The mathematical models, operational benefits, and the limitations of existing CAC schemes are also discussed. Subsequently, we prepared a comparative study between the existing and proposed scheme in terms of the aforementioned QoS related factors. The numerical results we have obtained so far show that the proposed UFB scheme is an optimal CAC scheme in terms of QoS and resource utilization as compared to the existing schemes.

Call Admission Control using Soft QoS-based Borrowing Scheme in DVB-RCS Networks (DVB-RCS 망에서 Soft-QoS 기반의 Borrowing 기법을 사용한 호 수락 제어)

  • Lee, Hee-Bong;Jang, Yeong-Min;Lee, Ho-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.61-65
    • /
    • 2005
  • We propose a soft QoS-based borrowing scheme for call admission control(CAC) in DVB-RCS(Digital Video Broadcast-Return Channel via Satellite). Some of the ongoing calls temporarily and fairly release bandwidths that can be used to accommodate a new call in an overloaded satellite network. The amount of bandwidth borrowed from each call is proportional to each user's critical bandwidth ratio, one of parameters for soft QoS mechanism. Simulation results show that the proposed scheme improves the system performance in terms of call blocking probability and bandwidth utilization.

QoS-Aware Call Admission Control for Multimedia over CDMA Network (CDMA 무선망상의 멀티미디어 서비스를 위한 QoS 제공 호 제어 기법)

  • 정용찬;정세정;신지태
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.12
    • /
    • pp.106-115
    • /
    • 2003
  • Diverse multimedia services will be deployed at hand on 3G-and-beyond multi-service CDMA systems in order to satisfy different quality of service (QoS) according to traffic types. In order to use appropriate resources efficiently the call admission control (CAC) as a major resource control mechanism needs to be used to take care of efficient utilization of limited resources. In this paper, we propose a QoS-aware CAC (QCAC) that is enabled to provide service fairness and service differentiation in accordance with priority order and that applies the different thresholds in received power considering different QoS requirements such as different bit error rates (BER) when adopting total received power as the ceil load estimation. The proposed QCAC calculates the different thresholds of the different traffic types based on different required BER applies it for admission policy, and can get service fairness and differentiation in terms of call dropping probability as a main performance metric. The QCAC is aware of the QoS requirement per traffic type and allows admission discrimination according to traffic types in order to minimize the probability of QoS violation. Also the CAC needs to consider the resource allocation schemes such as complete sharing (CS), complete partitioning (CP), and priority sharing(PS) in order to provide fairness and service differentiation among traffic types. Among them, PS is closely related with the proposed QCAC having differently calculated threshold per each traffic type according to traffic priority orders.

KOINONIA High-Rate WPAN Channel Time Allocation and CAC Algorithm for Multimedia Transmission (KOINONIA 고속 WPAN의 멀티미디어 전송을 위한 채널 타임 할당 및 CAC 알고리즘)

  • Park Jong-Ho;Lee Tae-Jin;June Sun-Do;Youn Kyu-Jung;Won Yun-Jae;Cho Jin-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5A
    • /
    • pp.417-425
    • /
    • 2005
  • KOINONIA is high-rate Wireless Personal Area Network (WPAN) technology, and is developed for multimedia traffic transmission in personal area. A KOINONIA piconet is a collection of one or more associated slaves under a single master. Efficient scheduling of a master for the traffic of slaves is essential to use channel effectively and to guarantee QoS of multimedia traffic. We propose a new scheduling algorithm to allocate channel time at desired intervals regardless of superframe length, and a Connection Admission Control(CAC) algorithm to regulate the number of traffics in a piconet. Our proposed algorithms have been shown to save channel time and to meet QoS requirements compared to the conventional weighted round-robin algorithm.

A Group Handover Algorithm Consider ins QoS in Frame Relay Networks (프레임 릴레이 망에서 QoS를 고려한 그룹 핸드오버 알고리즘)

  • 손정호;박상욱;서주환;한기준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10c
    • /
    • pp.442-444
    • /
    • 2001
  • 최근 통신환경의 급속한 발전과 함께 점점 복잡 다양해지는 사회적 요구에 의해 유선망을 무선환경으로 옮겨 가기 위한 많은 연구들이 진행되고 있다. 본 논문에서는 Frame Relay 망과 WATM 백본 망라의 연동 환경을 제안하였고, 이 망에서 Frame Relay 망의 이동으로 인하여 발생하는 망의 이동성 지원 방안과 QoS를 보장하는 단말들의 멀티 핸드오버를 효율적으로 지원하기 위한 G-CAC알고리즘을 제안한다. 본 논문에서 제안한 G-CAC알고리즘은 망 단위의 이동환경에서 Frame Relay의 트래픽 특성, DE/CLP 맵핑 , 트래픽 파라미터 변환 방식을 이용하여 핸드오버 블락킹 율과 손실 율을 감소시킨다. 또한 여러 Frame Relay 망과 통신하고 있는 백본의 WATM에서는 다른 Frame Relay망들의 할당된 자원 중에 CLP비트가 세트된 셀들을 드롭하여 그 자원을 새로운 핸드오버를 요청하는 Frame Relay망에 접합된 WATM에 제공하는 QoS를 고려한 핸드오버 CAC(connection admission control)알고리즘을 제안한다.

  • PDF

A Call Admission Control Algorithm in 3GPP LTE System for Guarantee of Packet Delay (패킷 지연 보장을 위한 LTE 시스템의 호 수락 제어 알고리즘)

  • Bae, Sueng-Jae;Choi, Bum-Gon;Lee, Jin-Ju;Kwon, Sung-Oh;Chung, Min-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6A
    • /
    • pp.458-467
    • /
    • 2009
  • Long Tenn Evolution (LTE) is the next generation mobile phone technology which has being standardized by the Third Generation Partnership Project (3GPP). In the existing mobile communication networks, voice traffic is delivered through circuit switched networks. In LTE, however, all kinds of traffic are transferred through IP based packet switched networks which has best-effort characteristic. Therefore, providing QoS in LTE system is difficult. In order to provide QoS in LTE, RRM is very important. Especially, in part of RRM, call admission control (CAC) performs an important function to reduce network congestion and guarantee a certain level of QoS for on-going calls. In this paper, we propose a CAC algorithm in order to provide QoS for various kinds of services in LTE system. The performance of the proposed algorithm is evaluated with various simulation environments. The results show that the proposed algorithm provides QoS through rejections of requested calls. Especially, the proposed CAC algorithm can be satisfied with packet delay requirement defined in LTE specification.

Chernoff Bound and the Refined Large Deviation Approximation for Connection Admission Control in CDMA Systems

  • Yeong Min Jang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4B
    • /
    • pp.338-344
    • /
    • 2002
  • This paper proposes a transient (predictive) connection admission control (CAC) scheme using the transient quality of service (QoS) measure for CDMA cellular systems with bursts On-Off sources. We need an approximate and bounded approach for real-time CAC applications. We derive the transient outage probability as the QoS measure using the Chernoff bound and the refuted large deviation approximation. Numerical results show that the predictive CAC is a promising approach for the multicell CDMA systems.

Bandwidth allocation on VBR source traffic in high capacity ATM link (고용량 ATM 링크에서 VBR 소스트래픽을 위한 대역할당 알고리즘)

  • 김영선;최진규;노승환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.1899-1906
    • /
    • 1998
  • In ATM switching system link bandwidth is one of the improtant resources. Thus ATM switching system must allocate the bandwidth to the users efficiently and guarantee the QoS. Especially to guarantee the QoS of the VBR traffic source such as video, users must declare the traffic characteristics and QoS expectations using UPC parameters. The CAC can use two multiplexig models in variation to link capacity and connection number. One is loseless multiplexing model; the second is a statistical multiplexing model. The loseless multiplexing model performs best when the number of mutiplexed sources is small, but as the number of multiplexed sources is increase the CAC must use the statistical multiplexing model. In this paper, the statistical multiplexing models are studied, which are suitable for high capacity ATM link on VBR traffic sources. The satistical multiplexing model and the loseless multiplexing model are combined. In statistical model we map the UPC parameters provided by new VBR connection to appropriate source traffic model. In the high capacity ATM link, as the connection number increases, the statical multiplexing gain increases.

  • PDF

An Admission Control Mechanism to guarantee QoS of Streaming Service in WLAN (WLAN에서 스트리밍 서비스의 QoS를 보장하기 위한 승인 제어 기술)

  • Kang, Seok-Won;Lee, Hyun-Jin;Lee, Kyu-Hwan;Kim, Jae-Hyun;Roh, Byeong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6B
    • /
    • pp.595-604
    • /
    • 2009
  • The HCCA reserves the channel resources based on the mean data rate in IEEE 802.11e. It may cause either the waste of channel resource or the increase of transmission delay at MAC layer if the frame size is rapidly varied when a compressed mode video codec such as MPEG video is used. To solve these problems, it is developed that the packet scheduler allocates the wireless resource adaptation by according to the packet size. However, it is difficult to perform the admission control because of the difficulty with calculating the available resources. In this paper, we propose a CAC mechanism to solve the problem that may not satisfy the QoS by increasing traffic load in case of using EDCA. Especially, the proposed CAC mechanism calculates the EB of TSs using the traffic information transmitted by the application layer and the number of average transmission according to the wireless channel environment, and then determines the admission of the TS based on the EB. According to the simulation results of the proposed CAC mechanism, it admitted the TSs under the loads which are satisfied within the delay bound. Therefore, the proposed mechanism guarantees QoS of streaming services effectively.