• 제목/요약/키워드: CAAX motif

검색결과 5건 처리시간 0.02초

Functional Characterization of the Squid Calexcitin-2, a Calcium and GTP-binding Protein

  • Park, Sae-Young;Nelson, Thomas J.;Alkon, Daniel L.;Kim, Jeong-Ho
    • BMB Reports
    • /
    • 제33권5호
    • /
    • pp.391-395
    • /
    • 2000
  • Calexcitin, a calcium-binding protein, was previously cloned and functionally characterized in the squid Loligo pealei. We now report the cloning of a second form of Calexcitin, Calexcitin-2, found in the squid Todarodes pacificus optic lobe. Calexcitin-2 has a significantly different carboxyl terminal region than Calexcitin-1. It lacks the CAAX motif, which is a farnesylation site. The amino acid sequence of Calexcitin-2 shows an 84% identity with Calexcitin-1 and also displays a strong cross immunoreactivity. Western blotting shows that Calexcitin-2 was expressed exclusively in the optic lobe region of squid, but not in other body organs. Regardless of its lack of conserved regions for GTP-binding, Calexcitin-2 shows moderately low affinity GTP-binding and also shows dramatic conformational change induced by GTP-binding. Three possible GTP-binding region mutations, K142A, D144A, and K157A, did not change the G TP binding affinity. This raises the possibility that Calexcitin-2 may have a novel GTP-binding motif.

  • PDF

Chemistry and Biology of Ras Farnesyltransferase

  • Cho, Kwang-Nym;Lee, Kee-In
    • Archives of Pharmacal Research
    • /
    • 제25권6호
    • /
    • pp.759-769
    • /
    • 2002
  • Mutated forms of ras are found in many human tumors and the rate of incidence is significantly higher in colon and pancreatic cancers. The protein product from the ras oncogene is a small G-protein, $p21^{ras}{\;}(Ras)$ that is known to playa key role in the signal transduction cascade and cell differentiation and proliferation. Mutated Ras is unable to regulate itself and remains constantly activated, leading to uncontrolled cell growth. The function of Ras in signal transduction requires its location near the growth factor receptor at the cell membrane. However, Ras does not have a transmembrane domain. Ras requires farnesylation to increase its hydrophobicity and subsequent plasma membrane association for its transforming activity. This key post-translational modification is catalyzed by the enzyme Ras farnesyltransferase (FTase), which transfers a farnesyl group from farnesylpyrophosphate to the C-terminal cysteine of the Ras protein. The requirement has focused attention on FTase as a target for therapeutic intervention. Selective inhibition of FTase will prevent Ras protein from association with the plasma membrane, leading to a disruption of oncogenic Ras function.

Farnesyl transferase 억제제인 YH3938 및 YH3945에 의한 Ras 발암원성 억제 (Suppresion of Ras Oncogenic Activity by Farnesyl Transferase Inhibitors, YH3938 and YH3945)

  • 오명주;김농연;임수은;정영화;전병학
    • 생명과학회지
    • /
    • 제20권2호
    • /
    • pp.202-207
    • /
    • 2010
  • Ras 유전자는 30%의 인간암에서 변이가 발견되며 세 종류의 isoform, H-Ras, K-Ras 및 N-Ras로 구성되어 있다. Ras 단백질의 CAAX motif에 farnesylation과 같은 번역 후 변형은 Ras의 활성에 필수 요소이다. 본 연구에서는 새로운 farnesyl transferase 억제제인 YH3938과 YH3945의 발암원성 H-Ras, K-Ras 및 N-Ras의 작용에 대한 영향을 조사하였다. YH3938과 YH3945는 발암원성 H-Ras에 의해 형질전환된 Rat2 세포의 증식과 형태 변화를 억제하였으나 K-Ras에 대해서는 효과가 없었다. N-Ras에 대해서는 약한 영향이 있었다. H-Ras와 N-Ras에 의한 SRE promoter 활성화는 YH3938과 YH3945에 의해 억제되었으나, K-Ras에는 영향이 없었다. Ras 단백질의 bandshift 분석을 통해 YH3938은 H-Ras와 N-Ras의 번역 후 변환을 억제하였으나, K-Ras에는 영향이 없었다. YH3945는 H-Ras의 변환에만 영향이 있었다. 결론적으로 YH3938과 YH3945는 H-Ras의 farnesylation을 억제하여 그 발암원성을 억제하며, YH3938은 N-Ras 작용을 농도의존적으로 억제하며, K-ras에 대해서는 영향이 없음을 알 수 있었다.

$p19^{ras}$ Accelerates $p73{\beta}$-mediated Apoptosis through a Caspase-3 Dependent Pathway

  • Jang, Sang-Min;Kim, Jung-Woong;Choi, Kyung-Hee
    • Animal cells and systems
    • /
    • 제13권4호
    • /
    • pp.399-403
    • /
    • 2009
  • $p19^{ras}$ is an alternative splicing variant of the proto-oncogene c-H-ras pre-mRNA of $p21^{ras}$. In contrast to $p21^{ras}$, $p19^{ras}$ does not have a C-terminal CAAX motif that targets the plasma membrane and is localized to both the cytoplasm and nucleus. We found that $p19^{ras}$ activated the transcriptional activity of $p73{\beta}$ through protein-protein interactions in the nucleus. p73 is known to play an important role in cellular damage responses such as apoptosis. Although p73 is a structural and functional homologue of p53, p73-mediated apoptosis has not yet been clearly elucidated. In this study, we demonstrate that the interaction between $p19^{ras}$ and $p73{\beta}$ accelerated $p73{\beta}$-induced apoptosis through a caspase-3 dependent pathway. Treatment with DEVD-CHO, a caspase inhibitor, also strengthened $p73{\beta}$-mediated apoptosis through a caspase-3 dependent pathway. Furthermore, the enhanced transcriptional activity of endogenous $p73{\beta}$ by treatment with Taxol was amplified by $p19^{ras}$ overexpression, which markedly increased caspase-3 dependent apoptosis in the p53-null SAOS2 cancer cell line. Our findings indicate a functional linkage between $p19^{ras}$ and p73 in caspase-3 mediated apoptosis of cancer cells.