• Title/Summary/Keyword: C6 Glial Cell

Search Result 74, Processing Time 0.017 seconds

The anti-amoebic activity of Pinus densiflora leaf extract against the brain-eating amoeba Naegleria fowleri

  • Huong Giang Le;Woong Kim;Jung-Mi Kang;Tuan Cuong Vo;Won Gi Yoo;Hyeonsook Cheong;Byoung-Kuk Na
    • Parasites, Hosts and Diseases
    • /
    • v.62 no.2
    • /
    • pp.169-179
    • /
    • 2024
  • Naegleria fowleri invades the brain and causes a fatal primary amoebic meningoencephalitis (PAM). Despite its high mortality rate of approximately 97%, an effective therapeutic drug for PAM has not been developed. Approaches with miltefosine, amphotericin B, and other antimicrobials have been clinically attempted to treat PAM, but their therapeutic efficacy remains unclear. The development of an effective and safe therapeutic drug for PAM is urgently needed. In this study, we investigated the anti-amoebic activity of Pinus densiflora leaf extract (PLE) against N. fowleri. PLE induced significant morphological changes in N. fowleri trophozoites, resulting in the death of the amoeba. The IC50 of PLE on N. fowleri was 62.3±0.95 ㎍/ml. Alternatively, PLE did not significantly affect the viability of the rat glial cell line C6. Transcriptome analysis revealed differentially expressed genes (DEGs) between PLE-treated and non-treated amoebae. A total of 5,846 DEGs were identified, of which 2,189 were upregulated, and 3,657 were downregulated in the PLE-treated amoebae. The DEGs were categorized into biological process (1,742 genes), cellular component (1,237 genes), and molecular function (846 genes) based on the gene ontology analysis, indicating that PLE may have dramatically altered the biological and cellular functions of the amoeba and contributed to their death. These results suggest that PLE has anti-N. fowleri activity and may be considered as a potential candidate for the development of therapeutic drugs for PAM. It may also be used as a supplement compound to enhance the therapeutic efficacy of drugs currently used to treat PAM.

Effect of Resveratrol on the Induction of Cdk Inhibitor p21 and Pro-apoptotic Bax Expression by amyloid-β in Astroglioma C6 Cells (신경교 세포에서 resveratrol이 amyloid-β에 의해 유도되는 Cdk inhibitor p21 및 Bax 발현의 감소 효과)

  • Kim Young Ae;Lim Sun-Young;Ko Woo Shin;Choi Byung Tae;Lee Yong Tae;Rhee Sook-Hee;Park Kun-Young;Lee Won-Ho;Choi Yung Hyun
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.169-175
    • /
    • 2005
  • Resveratrol (3,4',5-trihydroxy-trans-stilbene), a phytoalexin found in grape skins, peanuts, and red wine, has been reported to have a wide range of biological and pharmacological properties. $Amyloid-\beta$ deposition and senile plaque-associated astrocytes are common neuropathological features of Alzheimer's disease. In this study, we have explored the effects of resveratrol on $amyloid-\beta-peptide-mediated$ cytotoxicity in vitro and modulation of cell growth-regulatory gene products in astroglioma C6 cells to elucidate its possible mechanism for anti-cytotoxicity. Exposure of C6 cells to $Amyloid-\beta$ resulted in dose-dependent growth inhibition and morphological changes of C6 cells, which were recovered by pre-treatment with resveratrol. The anti-proliferative effect of $amyloid-\beta$ was associated with the induction of tumor suppressor p53 and cyclin-dependent kinase (Cdk) inhibitor p21 (WAF1/CIP1) expression assessed by RT-PCR and Western blot analysis in time-dependent manner in C6 cells. In addition, the pro-apoptotic Bax expression was also up-regulated in $amyloid-\beta-treated$ C6 cells without alteration of anti-apoptotic Bcl-2 and $Bcl-X_L$ expression. However, pre-treatment of resveratrol significantly inhibited $amyloid-\beta-induced$ p53, p21 and Bax levels, suggesting that the modulation of p53, p21 and Bax levels could be one of the possible pathways by which resveratrol functions as anti-cytotoxic agent. Our results demonstrate that resveratrol may enhance the protection against $amyloid-\beta-induced$ cytotoxicity by promoting the survival of glial cells.

Thuja orientalis leaves extract protects dopaminergic neurons against MPTP-induced neurotoxicity via inhibiting inflammatory action (MPTP로 유도된 Parkinson's disease 동물 모델에서 항염증효과를 통한 측백엽의 도파민신경보호 효과)

  • Park, Gunhyuk;Kim, Hyo Geun;Ju, Mi Sun;Kim, Ae-Jung;Oh, Myung Sook
    • The Korea Journal of Herbology
    • /
    • v.29 no.3
    • /
    • pp.27-33
    • /
    • 2014
  • Objectives : The aim of this study was to investigate the protective effect of extract of Thuja orientalis leaves (TOFE) against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity by inhibition of inflammation in in vitro and in vivo models of Parkinson's disease (PD). Methods : We evaluated the effect of TOFE against lipopolysaccharide (LPS)/1-methyl-4-phenylpyridinium ($MPP^+$) toxicity using nitric oxide (NO) assay, inducible NO synthase and cyclooxygenase 2 western blot, tyrosine hydroxylase and microglia activation immunohistochemistry (IHC) in BV2 cell, primary rat mesencephalic neurons, or C57BL/6 mice. We also evaluated the effect of TOFE in mice PD model induced by MPTP. C57BL/6 mice were treated with TOFE 50 mg/kg for 5 days and were injected intraperitoneally with four administrations of MPTP on the last day. We conducted behavioral tests and IHC analysis to see how TOFE affect MPTP-induced neuronal loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) and striatum (ST) of mice. To assess the anti-inflammation effects, we carried out glial fibrillary acidic protein and macrophage-1 antigen integrin alpha M in IHC in SNpc and ST of mice. Results : In an in vitro system, TOFE decreasesd NO generations in BV2 cells. TOFE protected dopaminergic cells against LPS or $MPP^+$-induced toxicity in primary mesencephalic dopaminergic neurons. In vivo system, TOFE at 50 mg/kg treated group showed improved motor deteriorations than the MPTP only treated group and TOFE significantly protected striatal dopaminergic damage from MPTP-induced neurotoxicity in mice. Moreover, TOFE inhibited activation of astrocyte and microglia in SNpc and ST of the mice. Conclusions : We concluded that TOFE showed anti-parkinsonian effect by protection of dopaminergic neurons against MPTP toxicity through anti-inflammatory actions.

Protective effects of Atractylodis Rhizoma Alba Extract on seizures mice model (뇌전증 동물 모델에 대한 백출 추출물의 보호 효과)

  • Kang, Sohi;Lee, Su Eun;Lee, Ayeong;Seo, Yun-Soo;Moon, Changjong;Kim, Sung Ho;Lee, Jihye;Kim, Joong Sun
    • The Korea Journal of Herbology
    • /
    • v.36 no.6
    • /
    • pp.1-8
    • /
    • 2021
  • Objectives : Atractylodis rhizoma Alba has been traditionally used as a medicinal resource that is used for enhancing Qi (氣) in traditional medicine in Korea, China, and Japan. This study investigated the protective effects of Atractylodis rhizoma Alba extract (ARE) against trimethyltin (TMT), a neurotoxin that causes selective hippocampal injury, using both in vitro and in vivo models. Methods : We investigated the effects of ARE on TMT- (5mM) induced cytotoxicity in primary cultures of mouse hippocampal cells (7 days in vitro ) and on hippocampal injury in C57BL/6 mice injected with TMT (2.6 mg/kg). Results : We observed that ARE treatment (0 - 50 ㎍/mL) significantly reduced TMT-induced cytotoxicity in cultured hippocampal neurons in a dose-dependent manner, based on results of lactate dehydrogenase and 3-4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assays. Additionally, this study showed that orally administered ARE (5 mg/kg; between -6 and 0 days before TMT injection) significantly attenuated seizures in adult mice. Furthermore, quantitative analysis of allograft inflammatory factor-1 (Iba-1)- and glial fibrillary acidic protein (GFAP)- positive cells showed significantly reduced levels of Iba-1- and GFAP-positive cell bodies in the dentate gyrus of mice treated with ARE prior to TMT injection. These findings indicate the significant protective effects of ARE against the TMT-induced massive activation of microglia and astrocytes in the hippocampus. Conclusions : We conclude that ARE minimizes the detrimental effects of TMT-induced hippocampal neurotoxicity, both in vitro and in vivo . Our findings may serve as useful guidelines to support ARE administration as a promising pharmacotherapeutic approach to hippocampal degeneration.