• Title/Summary/Keyword: C5.0 decision tree

Search Result 47, Processing Time 0.025 seconds

Development and application of prediction model of hyperlipidemia using SVM and meta-learning algorithm (SVM과 meta-learning algorithm을 이용한 고지혈증 유병 예측모형 개발과 활용)

  • Lee, Seulki;Shin, Taeksoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.111-124
    • /
    • 2018
  • This study aims to develop a classification model for predicting the occurrence of hyperlipidemia, one of the chronic diseases. Prior studies applying data mining techniques for predicting disease can be classified into a model design study for predicting cardiovascular disease and a study comparing disease prediction research results. In the case of foreign literatures, studies predicting cardiovascular disease were predominant in predicting disease using data mining techniques. Although domestic studies were not much different from those of foreign countries, studies focusing on hypertension and diabetes were mainly conducted. Since hypertension and diabetes as well as chronic diseases, hyperlipidemia, are also of high importance, this study selected hyperlipidemia as the disease to be analyzed. We also developed a model for predicting hyperlipidemia using SVM and meta learning algorithms, which are already known to have excellent predictive power. In order to achieve the purpose of this study, we used data set from Korea Health Panel 2012. The Korean Health Panel produces basic data on the level of health expenditure, health level and health behavior, and has conducted an annual survey since 2008. In this study, 1,088 patients with hyperlipidemia were randomly selected from the hospitalized, outpatient, emergency, and chronic disease data of the Korean Health Panel in 2012, and 1,088 nonpatients were also randomly extracted. A total of 2,176 people were selected for the study. Three methods were used to select input variables for predicting hyperlipidemia. First, stepwise method was performed using logistic regression. Among the 17 variables, the categorical variables(except for length of smoking) are expressed as dummy variables, which are assumed to be separate variables on the basis of the reference group, and these variables were analyzed. Six variables (age, BMI, education level, marital status, smoking status, gender) excluding income level and smoking period were selected based on significance level 0.1. Second, C4.5 as a decision tree algorithm is used. The significant input variables were age, smoking status, and education level. Finally, C4.5 as a decision tree algorithm is used. In SVM, the input variables selected by genetic algorithms consisted of 6 variables such as age, marital status, education level, economic activity, smoking period, and physical activity status, and the input variables selected by genetic algorithms in artificial neural network consist of 3 variables such as age, marital status, and education level. Based on the selected parameters, we compared SVM, meta learning algorithm and other prediction models for hyperlipidemia patients, and compared the classification performances using TP rate and precision. The main results of the analysis are as follows. First, the accuracy of the SVM was 88.4% and the accuracy of the artificial neural network was 86.7%. Second, the accuracy of classification models using the selected input variables through stepwise method was slightly higher than that of classification models using the whole variables. Third, the precision of artificial neural network was higher than that of SVM when only three variables as input variables were selected by decision trees. As a result of classification models based on the input variables selected through the genetic algorithm, classification accuracy of SVM was 88.5% and that of artificial neural network was 87.9%. Finally, this study indicated that stacking as the meta learning algorithm proposed in this study, has the best performance when it uses the predicted outputs of SVM and MLP as input variables of SVM, which is a meta classifier. The purpose of this study was to predict hyperlipidemia, one of the representative chronic diseases. To do this, we used SVM and meta-learning algorithms, which is known to have high accuracy. As a result, the accuracy of classification of hyperlipidemia in the stacking as a meta learner was higher than other meta-learning algorithms. However, the predictive performance of the meta-learning algorithm proposed in this study is the same as that of SVM with the best performance (88.6%) among the single models. The limitations of this study are as follows. First, various variable selection methods were tried, but most variables used in the study were categorical dummy variables. In the case with a large number of categorical variables, the results may be different if continuous variables are used because the model can be better suited to categorical variables such as decision trees than general models such as neural networks. Despite these limitations, this study has significance in predicting hyperlipidemia with hybrid models such as met learning algorithms which have not been studied previously. It can be said that the result of improving the model accuracy by applying various variable selection techniques is meaningful. In addition, it is expected that our proposed model will be effective for the prevention and management of hyperlipidemia.

A prediction model for adolescents' skipping breakfast using the CART algorithm for decision trees: 7th (2016-2018) Korea National Health and Nutrition Examination Survey (의사결정나무 CART 알고리즘을 이용한 청소년 아침결식 예측 모형: 제7기 (2016-2018년) 국민건강영양조사 자료분석)

  • Sun A Choi;Sung Suk Chung;Jeong Ok Rho
    • Journal of Nutrition and Health
    • /
    • v.56 no.3
    • /
    • pp.300-314
    • /
    • 2023
  • Purpose: This study sought to predict the reasons for skipping breakfast by adolescents aged 13-18 years using the 7th Korea National Health and Nutrition Examination Survey (KNHANES). Methods: The participants included 1,024 adolescents. The data were analyzed using a complex-sample t-test, the Rao Scott χ2-test, and the classification and regression tree (CART) algorithm for decision tree analysis with SPSS v. 27.0. The participants were divided into two groups, one regularly eating breakfast and the other skipping it. Results: A total of 579 and 445 study participants were found to be breakfast consumers and breakfast skippers respectively. Breakfast consumers were significantly younger than those who skipped breakfast. In addition, breakfast consumers had a significantly higher frequency of eating dinner, had been taught about nutrition, and had a lower frequency of eating out. The breakfast skippers did so to lose weight. Children who skipped breakfast consumed less energy, carbohydrates, proteins, fats, fiber, cholesterol, vitamin C, vitamin A, calcium, vitamin B1, vitamin B2, phosphorus, sodium, iron, potassium, and niacin than those who consumed breakfast. The best predictor of skipping breakfast was identifying adolescents who sought to control their weight by not eating meals. Other participants who had low and middle-low household incomes, ate dinner 3-4 times a week, were more than 14.5 years old, and ate out once a day showed a higher frequency of skipping breakfast. Conclusion: Based on these results, nutrition education targeted at losing weight correctly and emphasizing the importance of breakfast, especially for adolescents, is required. Moreover, nutrition educators should consider designing and implementing specific action plans to encourage adolescents to improve their breakfast-eating practices by also eating dinner regularly and reducing eating out.

Application of HACCP System on Establishing Hygienic Standards in Pizza Specialty Restaurant - Focused on Salad Items - (HACCP제도를 활용한 피자 전문 패스트푸드 업체의 자체 위생관리기준 설정 - 샐러드를 중심으로 -)

  • Lee Bog-Hieu;Kim In-Ho;Huh Kyoung-Sook;Cho Kyong-Dong
    • Journal of the Korean Home Economics Association
    • /
    • v.41 no.10 s.188
    • /
    • pp.101-116
    • /
    • 2003
  • The study was conducted to establish hygienic standards of salad items for pizza restaurant located in Seoul by applying HACCP system during the summer of 2000. The study measured temperature, time, pH, Aw and microbial assessments. The hygienic conditions of the kitchen and workers were on the average(1.21, 1.0 out of 3 pts.), but some improvement should be made: separate use of trash can and leftover disposal, separate use of knives and cutting boards, habits for hand washing and wearing hygienic gloves. For salad production, all procedures were peformed under food safety danger zone ($5{\~}60^{\circ}C$). The ingredients were mostly above pH 5.0 and high in Aw($0.94{\~}0.99$). Microbial assessments for salad production revealed that TPC($1.8{\times}10^3{\~}1.0{\times}10^{10}CFU/g$) and coliforms($1.5{\times}10{\~}5.2{\times}10^5 CFU/g$) exceeded the standards by Solberg et al.(TPC: $10^6CFU/g$, coliforms: $10^3CFU/g$). S. aureus was not detected but Salmonella was found in three food items(egg, macaroni and macaroni salad). Moreover, the workers' hands contained 3.1 104 CFU/g of TPC and 4.2 102 CFU/g of S. aureus requiring further remedy since it exceeded the safety standards suggested by Harrigan and McCance (500 CFU/g of TPC per $100cm^2$ and 10 CFU/g of coliforms per $100cm^2$). According to the critical control point(CCP) decision tree analysis, vegetable receiving, vegetable holding, mixing, display on coleslaw, macaroni draining, display on macaroni salad, egg peeling & cutting, apple cutting, and display on salad bar were determined as CCPs. From the findings it would be suggested that purchase of Quality materials, short holding and display time, storing food at right temperature, using sanitary cooking utensils, and improvement of workers' food handing practices are needed to ensure the safe salad production in this specific pizza restaurant.

Verification Test of High-Stability SMEs Using Technology Appraisal Items (기술력 평가항목을 이용한 고안정성 중소기업 판별력 검증)

  • Jun-won Lee
    • Information Systems Review
    • /
    • v.20 no.4
    • /
    • pp.79-96
    • /
    • 2018
  • This study started by focusing on the internalization of the technology appraisal model into the credit rating model to increase the discriminative power of the credit rating model not only for SMEs but also for all companies, reflecting the items related to the financial stability of the enterprises among the technology appraisal items. Therefore, it is aimed to verify whether the technology appraisal model can be applied to identify high-stability SMEs in advance. We classified companies into industries (manufacturing vs. non-manufacturing) and the age of company (initial vs. non-initial), and defined as a high-stability company that has achieved an average debt ratio less than 1/2 of the group for three years. The C5.0 was applied to verify the discriminant power of the model. As a result of the analysis, there is a difference in importance according to the type of industry and the age of company at the sub-item level, but in the mid-item level the R&D capability was a key variable for discriminating high-stability SMEs. In the early stage of establishment, the funding capacity (diversification of funding methods, capital structure and capital cost which taking into account profitability) is an important variable in financial stability. However, we concluded that technology development infrastructure, which enables continuous performance as the age of company increase, becomes an important variable affecting financial stability. The classification accuracy of the model according to the age of company and industry is 71~91%, and it is confirmed that it is possible to identify high-stability SMEs by using technology appraisal items.

Prediction Model for unfavorable Outcome in Spontaneous Intracerebral Hemorrhage Based on Machine Learning

  • Shengli Li;Jianan Zhang;Xiaoqun Hou;Yongyi Wang;Tong Li;Zhiming Xu;Feng Chen;Yong Zhou;Weimin Wang;Mingxing Liu
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.1
    • /
    • pp.94-102
    • /
    • 2024
  • Objective : The spontaneous intracerebral hemorrhage (ICH) remains a significant cause of mortality and morbidity throughout the world. The purpose of this retrospective study is to develop multiple models for predicting ICH outcomes using machine learning (ML). Methods : Between January 2014 and October 2021, we included ICH patients identified by computed tomography or magnetic resonance imaging and treated with surgery. At the 6-month check-up, outcomes were assessed using the modified Rankin Scale. In this study, four ML models, including Support Vector Machine (SVM), Decision Tree C5.0, Artificial Neural Network, Logistic Regression were used to build ICH prediction models. In order to evaluate the reliability and the ML models, we calculated the area under the receiver operating characteristic curve (AUC), specificity, sensitivity, accuracy, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR). Results : We identified 71 patients who had favorable outcomes and 156 who had unfavorable outcomes. The results showed that the SVM model achieved the best comprehensive prediction efficiency. For the SVM model, the AUC, accuracy, specificity, sensitivity, PLR, NLR, and DOR were 0.91, 0.92, 0.92, 0.93, 11.63, 0.076, and 153.03, respectively. For the SVM model, we found the importance value of time to operating room (TOR) was higher significantly than other variables. Conclusion : The analysis of clinical reliability showed that the SVM model achieved the best comprehensive prediction efficiency and the importance value of TOR was higher significantly than other variables.

A Study on the Revitalization of Tourism Industry through Big Data Analysis (한국관광 실태조사 빅 데이터 분석을 통한 관광산업 활성화 방안 연구)

  • Lee, Jungmi;Liu, Meina;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.149-169
    • /
    • 2018
  • Korea is currently accumulating a large amount of data in public institutions based on the public data open policy and the "Government 3.0". Especially, a lot of data is accumulated in the tourism field. However, the academic discussions utilizing the tourism data are still limited. Moreover, the openness of the data of restaurants, hotels, and online tourism information, and how to use SNS Big Data in tourism are still limited. Therefore, utilization through tourism big data analysis is still low. In this paper, we tried to analyze influencing factors on foreign tourists' satisfaction in Korea through numerical data using data mining technique and R programming technique. In this study, we tried to find ways to revitalize the tourism industry by analyzing about 36,000 big data of the "Survey on the actual situation of foreign tourists from 2013 to 2015" surveyed by the Korea Culture & Tourism Research Institute. To do this, we analyzed the factors that have high influence on the 'Satisfaction', 'Revisit intention', and 'Recommendation' variables of foreign tourists. Furthermore, we analyzed the practical influences of the variables that are mentioned above. As a procedure of this study, we first integrated survey data of foreign tourists conducted by Korea Culture & Tourism Research Institute, which is stored in the tourist information system from 2013 to 2015, and eliminate unnecessary variables that are inconsistent with the research purpose among the integrated data. Some variables were modified to improve the accuracy of the analysis. And we analyzed the factors affecting the dependent variables by using data-mining methods: decision tree(C5.0, CART, CHAID, QUEST), artificial neural network, and logistic regression analysis of SPSS IBM Modeler 16.0. The seven variables that have the greatest effect on each dependent variable were derived. As a result of data analysis, it was found that seven major variables influencing 'overall satisfaction' were sightseeing spot attraction, food satisfaction, accommodation satisfaction, traffic satisfaction, guide service satisfaction, number of visiting places, and country. Variables that had a great influence appeared food satisfaction and sightseeing spot attraction. The seven variables that had the greatest influence on 'revisit intention' were the country, travel motivation, activity, food satisfaction, best activity, guide service satisfaction and sightseeing spot attraction. The most influential variables were food satisfaction and travel motivation for Korean style. Lastly, the seven variables that have the greatest influence on the 'recommendation intention' were the country, sightseeing spot attraction, number of visiting places, food satisfaction, activity, tour guide service satisfaction and cost. And then the variables that had the greatest influence were the country, sightseeing spot attraction, and food satisfaction. In addition, in order to grasp the influence of each independent variables more deeply, we used R programming to identify the influence of independent variables. As a result, it was found that the food satisfaction and sightseeing spot attraction were higher than other variables in overall satisfaction and had a greater effect than other influential variables. Revisit intention had a higher ${\beta}$ value in the travel motive as the purpose of Korean Wave than other variables. It will be necessary to have a policy that will lead to a substantial revisit of tourists by enhancing tourist attractions for the purpose of Korean Wave. Lastly, the recommendation had the same result of satisfaction as the sightseeing spot attraction and food satisfaction have higher ${\beta}$ value than other variables. From this analysis, we found that 'food satisfaction' and 'sightseeing spot attraction' variables were the common factors to influence three dependent variables that are mentioned above('Overall satisfaction', 'Revisit intention' and 'Recommendation'), and that those factors affected the satisfaction of travel in Korea significantly. The purpose of this study is to examine how to activate foreign tourists in Korea through big data analysis. It is expected to be used as basic data for analyzing tourism data and establishing effective tourism policy. It is expected to be used as a material to establish an activation plan that can contribute to tourism development in Korea in the future.

HACCP Model for Quality Control of Sushi Production in the Eine Japanese Restaurants in Korea (일본전문식당의 급식품질 개선을 위한 HACCP 시스템 적용 연구)

  • 김혜경;이복희;김인호;조경동
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.13 no.1
    • /
    • pp.25-38
    • /
    • 2003
  • This study was conducted to establish the microbiological quality standards applying the HACCP system on sushi items of Japanese restaurant in Korea. The study evaluated hygienic conditions of kitchen and workers, pH time-temperature relationship, and microbial assessments during whole process of sushi making in 2001. Overall hygienic conditions were normal for both kitchen and for workers by 3 point scale, but hygienic controls against the cross-contamination were still needed. Each process of sushi making was performed under the risk of microbial contamination, since pH value of most of ingredients was over pH 4.6 and also production time(3.5~6 hrs) were long enough to cause problems. Microorganisms were high enough to cause foodborne illness ranged 8.0$\times$10$^2$~3.3$\times$10$^{6}$ CFU/g of TPC and 1.0$\times$10$^1$~1.6$\times$10$^3$CFU/g of coliforms, although TPC, coliforms and Staphylcoccus aureus were within the standard limits (TPC 10$^2$~10$^{6}$ CFU/g, coliforms 10$^3$CFU/g). However, Salmonella and Vibrio parahaemolyticus were not detected. High populations TPC and coliforms were also found in the cooks' hands and cooking utensils(TPC 10$^2$~10$^{6}$ CFU/100cm$^2$and Coliforms 10$^1$~10$^3$CFU/100cm$^2$). Based on the CCP decision tree analysis, the CCPs were the holding steps far six sushi production line except the tuna and the thawing step for tuna sushi. In conclusion, overall state of sushi production was fairly good but much improvement was still needed.

  • PDF