• Title/Summary/Keyword: C5 Protein

Search Result 5,637, Processing Time 0.03 seconds

Funcyional Studies on Gene 2.5 Protein of Bacteriophage T7 : Protein Interactions of Replicative Proteins (박테리오파아지 T7 의 기능에 관한 연구;복제단백질간의 단백질 상호작용)

  • 김학준;김영태
    • Journal of Life Science
    • /
    • v.6 no.3
    • /
    • pp.185-192
    • /
    • 1996
  • Bacteriophage T7 gene 2.5 protein, a single-stranded DNA binding protein, is required for T7 DNA replication, recombination, and repair. T7 gene 2.5 protein has two distinctive domains, DNA binding and C-terminal domain, directly involved in protein-protein interaction. Gene 2.5 protein participates in the DNA replication of Bacteriophage T7, which makes this protein essential for the T7 growth and DNA replication. What gene 2.5 protein makes important at T7 growth and DNA replication is its binding affinity to single-stranded DNA and the protein-protein important at T7 DNA replication proteins which are essential for the T7 DNA synthesis. We have constructed pGST2.5(WT) encoding the wild-type gene 2.5 protein and pGST2.5$\Delta $21C lacking C-terminal 21 amino acid residues. The purified GST-fusion proteins, GST2.5(WT) and GST2.5(WT)$\Delta$21C, were used for whether the carboxyl-terminal domain participates in the protein-protein interactions or not. GST2.5(WT) and GST2.5$\Delta$21C showed the difference in the protein-protein interaction. GST2.5(WT) interacted with T7 DNA polymerase and gene 4 protein, but GST2.5$\Delta$21C did not interact with either protein. Secondly, GST2.5(WT) interacts with gene 4 proteins (helicase/primase) but not GST2.5$\Delta$21C. these results proved the involvement of the carboxyl-terminal domain of gene 2.5 protein in the protein-protein interaction. We clearly conclude that carboxy-terminal domain of gene 2.5 protein is firmly involved in protein-protein interactions in T7 replication proteins.

  • PDF

Effects of Overexpression of C5 Protein on rnpB Gene Expression in Escherichia coli

  • Kim, Yool;Lee, Young-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.791-793
    • /
    • 2009
  • Escherichia coli RNase P is composed of a large RNA subunit (M1 RNA) and a small protein subunit (C5 protein). Since both subunits are assembled in a 1:1 ratio, expression of M1 RNA and C5 protein should be coordinately regulated for RNase P to be efficiently synthesized in the cell. However, it is not known yet how the coordination occurs. In this study, we investigated how overexpression of C5 protein affects expression of the rnpB gene encoding M1 RNA, using a lysogenic strain, which carries an rnpB-lacZ transcription fusion. Primer extension analysis of rnpB-lacZ fusion transcripts showed that the overexpression of C5 protein increased the amount of the fusion transcripts, suggesting that rnpB expression increases with the increase of intracellular level of C5 protein.

Regulatory Action of Protein Tyrosine Kinase in Intracellular Calcium Mobilization in C5a-stimulated Neutrophils (C5a에 의해 자극된 호중구에서 세포내 칼슘동원에 대한 Protein Tyrosine Kinase의 조절작용)

  • Choi, Won-Tae;Han, Eun-Sook;Lee, Chung-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.417-424
    • /
    • 1996
  • The present study was done to examine the involvement of protein kinase C and protein tyrosine kinase in intracellular $Ca^{2+}$ mobilization in C5a-stimulated neutrophils. Although protein kinase C inhibitors, staurosporine and H-7 inhibited intracellular $Ca^{2+}$ release in C5a-stimulated neutrophils, they did not affect $Ca^{2+}$ influx across the plasma membrane and elevation of $[Ca^{2+}]_i$ C5a-induced intracellular $Ca^{2+}$ release and $Ca^{2+}$ influx were inhibited by protein tyrosine kinase inhibitors, genistein and methyl-2,5-dihydroxycinnamate. ADP-evoked elevation of $[Ca^{2+}]_i$ was inhibited by genistein and methyl-2,5-dihydroxycinnamate but was not affectd by staurosporine and H-7. Genistein and methyl-2,5-dihydroxycinnamate reduced the store-regulated $Ca^{2+}$ influx in thapsigargin-treated neutrophils, while the effect of staurosporine and H-7 was not detected. When neutrophils were preincubated wih phorbol 12-myristate 13-acetate, the stimulatory effect of C5a on the elevation of $[Ca^{2+}]_i$ was reduced. These results suggest that protein tyrosine kinase may be involved in control of intracellular $Ca^{2+}$ release and $Ca^{2+}$ influx across the plasma membrane in C5a-activated neutrophils.

  • PDF

Selection and Analysis of Genomic Sequence-Derived RNA Motifs Binding to C5 Protein

  • Kim, Kwang-sun;Ryoo, Hye-jin;Lee, June-Hyung;Kim, Mee-hyun;Kim, Tae-yeon;Kim, Yool;Han, Kook;Lee, Seol-Hoon;Lee, Young-hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.699-704
    • /
    • 2006
  • Escherichia coli RNase P is a ribonucleoprotein composed of M1 RNA and C5 protein. Previously, analysis of RNA aptamers selected for C5 protein from a synthetic RNA library showed that C5 protein could bind various RNA molecules as an RNA binding protein. In this study, we searched cellular RNA motifs that could be recognized by C5 protein by a genomic SELEX approach. We found various C5 protein-binding RNA motifs derived from E. coli genomic sequences. Our results suggest that C5 protein interacts with various cellular RNA species in addition to M1 RNA.

Biochemical and Molecular Biological Studies on the DNA Replication of Bacteriophage T7 (Bacteriophage T7의 유전자 복제기작에 관한 생화학적, 분자생물학적 특성 연구)

  • KIM Young Tae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.2
    • /
    • pp.209-218
    • /
    • 1995
  • Bacteriophage T7 gene 2.5 protein, a single-stranded DNA binding protein, has been implicated in T7 DNA replication, recombination, and repair. Purified gene 2.5 protein has been shown to interact with the phage encoded gene 5 protein (DNA polymerase) and gene 4 proteins (helicase and primase) and stimulates their activities. Genetic analysis of T7 phage defective in gene 2.5 shows that the gene 2.5 protein is essential for T7 DNA replication and growth. T7 phage that contain null mutants of gene 2.5 were constructed by homologous recombination. These mutant phage $(T7\Delta2.5)$ cannot grow in Escherichia coli. After infection of E. coli with $T7\Delta2.5$, host DNA synthesis is shut off, and $T7\Delta2.5$ DNA synthesis is reduced to less than $1\%$ of wild-type phage DNA synthesis (Kim and Richardson, 1993, Proc. Natl. Aca. Sci. USA, 90, 10173-10177). A truncated gene 2.5 protein $(GP2.5-\Delta21C)$ deleted the 21 carboxyl terminal amino acids was constructed by in vitro mutagenesis. $GP2.5-\Delta21C$ cannot substitute for wild-type gene 2.5 protein in vivo; the phage are not viable and exhibit less than $1\%$ of the DNA synthesis observed in wild-type phage-infected cells. $GP2.5-\Delta21C$ has been purified to apparent homogeneity from cells overexpressing its cloned gene. Purified $GP2.5-\Delta21C$ does not physically into「act with T1 gene 4 protein as measured by affinity chromatography and immunoblot analysis. The mutant protein cannot stimulate T7 gene 4 protein activity on RNA-primed DNA synthesis and primer synthesis. These results suggest that C-terminal domain of gene 2.5 protein is essential for protein-protein interactions.

  • PDF

Identification of a Cellular Protein Interacting with RNA Polymerase of Hepatitis C Virus

  • Park, Kyu-Jin;Choi, Soo-Ho;Koh, Moon-Soo;Kim, Sung-Wan;Hwang, Soon-Bong
    • BMB Reports
    • /
    • v.33 no.1
    • /
    • pp.59-62
    • /
    • 2000
  • Hepatitis C virus (HCV) nonstructural 5B (NS5B) protein is an RNA-dependent RNA polymerase (RdRp). To determine whether it can contribute to viral replication by interaction with cellular proteins, the yeast two-hybrid screening system was employed to screen a human liver cDNA library. Using the HCV NS5B as a bait, we have isolated positive clones encoding a cellular protein. The NS5B interacting protein, 5BIP, is a novel cellular protein of 170 amino acids. Interaction of the HCV NS5B protein with 5BIP was confirmed by a protein-protein blotting assay. Recently, we have demonstrated that NS5B possesses an RdRp activity and thus it is possible that 5BIP, in association with NS5B, plays a role in HCV replication.

  • PDF

Induction of Secondary Metabolites by Virginiamycin Inducing Factor, Virginiae Butanolide C (Virginiamycin 생합성 유도인자 Virginiae butanolide C에 의한 2차 대사산물 생산의 유도)

  • 김현수;강선영
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.5
    • /
    • pp.459-466
    • /
    • 1994
  • Virginiae butanolide C(VB-C) is one of the butyrolactone autoregulators, which triggers the production of virginiamycin in Streptomyces virginiae. Streptomyces longwoodensis was selected as a test strain to investigate new VB-C functions. When 100 ng/ml of the synthetic VB-C was added into the culture at 5 hour and 0 hour, the initial production time of antibiotics and a dark blue pigment were shortened by 4~6 hours and 2~4 hours, respectively. HPLC analysis revealed the production of several new antibiotics by VB-C addition. In the SDS-PAGE analysis of the total protein from mycelium several new protein bands showed up and the amounts of certain protein bands increased in the presense of VB-C. The existence of specific VB-C binding protein was confirmed from S. longwoodensis in relation to VB-C signal transduction. These results suggest that the VB-C might have an ability to induce the production of secondary metabolites in Streptomy- ces longwoodensis.

  • PDF

Partial Purification of Protein Kinase C in Glycine max (대두 유식물에서 Protein Kinase C의 부분 정제)

  • 최윤희
    • Journal of Plant Biology
    • /
    • v.36 no.2
    • /
    • pp.171-176
    • /
    • 1993
  • Protein kinase C, a protein related in PI cascade, was partially purified from the cytosol protein of etiolated plants of Glycine max by DEAE-52 cellulose chromatography and phenylsepharose chromatography. When the DEAE column was eluted with 0-0.8 M linear gradient KCl, tow fractions were found that increased the phosphorylation of histon H1 about five and nine-fold in the presence of 5 $\mu\textrm{g}$/mL phosphatidylserine and 0.5 $\mu\textrm{g}$/mL diolein, respectively. These fractions were used as DEAE pool. The reaction eluted with relatively high concentration of KCl was loaded on phyenylsepharose column with 5 mM CaCl2 and eluted with 1 mM EGTA. A fraction contained the protein kinase C, which increased the phosphorylation of the histon H1 was fractionated. To determine the molecular weight of PKC, the fraction eluted from phenylsepharose column was analyzed by 5~15% polyacrylamide gel electrophoresis after concentrated with the Amicon membrane (YM10). That revealed two bands corresponding to 60 and 65 kGy by silver staining of the gel, respectively.

  • PDF

Application of Gel-based Proteome Analysis Techniques to Studying Post-mortem Proteolysis in Meat

  • Hwang, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.9
    • /
    • pp.1296-1302
    • /
    • 2004
  • This study was conducted to evaluate the possible application of 2 D-SDS-PAGE (2 DE)-based proteome analysis techniques to the assessment of extreme proteolysis in postmortem skeletal muscle. Eight Hanwoo longissimus muscles were incubated immediately after slaughter for 24 h at 5$^{\circ}C$, 15$^{\circ}C$ or 36$^{\circ}C$. Warner Bratzler (WB)-shear force and ultrastructural configuration were determined at 24 h, and rate of proteolysis to 24 h was determined by 1 D-SDS-PAGE (1 DE) and 2 DE. In addition, tentative protein identification was performed from peptide mass fingerprints of MALDI-ToF analysis of major protein groups on 2 DE profiles. The result showed that although ultrastructural configuration was similar between the 5$^{\circ}C$ and 36$^{\circ}C$ treatments, meat at 5$^{\circ}C$ had higher WBshear force (approximately 5 kg greater). A higher rate of protein degradation at 36$^{\circ}C$ was observed based on Troponin-T degradation, 1 DE, and 2 DE analysis. This indicates that proteolysis during the early postmortem period was a significant determinant of shear force at 24 h. Little difference in proteolysis between 5$^{\circ}C$ and 15$^{\circ}C$ treatments was found based on classic 1 DE profile assessment. Meanwhile, considerable differences in the 2 DE profiles between the two treatments were revealed, with substantially higher rate of proteolysis at 15$^{\circ}C$ compared to 5$^{\circ}C$. Nuclease treatment improved 2 DE profile resolution. 400 ${\mu}$g and 600 ${\mu}$g of sample loading appeared to be appropriate for 24 cm pH 3-10 and pH 5-7 IPG strips, respectively. Protein detection and quantification of the 5$^{\circ}C$, 15$^{\circ}C$ and 36$^{\circ}C$ 2 DE profiles revealed 78, 163 and 232 protein spots respectively that were differentially modified in terms of their electrophoretic properties between approximately pI 5.3-7.7 with the molecular weight range of approximately 71-12 kDa. The current results demonstrated that 2 DE was a superior tool to 1 DE for characterising proteolysis in postmortem skeletal muscle.

Effects of Staurosporine and Genistein on Superoxide and HOCl Production in C5a- or PMA-activated Neutrophils (Staurosporine과 Genistein이 C5a 또는 PMA에 의하여 활성화된 호중구에서의 Superoxide와 HOCl 생성에 나타내는 영향)

  • Yun Young-Chul;Kang Hee-Jeong;Shin Yong-Kyoo;Lee Chung-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.1 s.57
    • /
    • pp.115-122
    • /
    • 1995
  • Effects of staurosporine, genistein and pertussis toxin on superoxide and HOCl production in C5a- or PMA-activated neutrophils were investigated. A C5a-induced superoxide and $H_2O_2$ production was inhibited by staurosporine, genistein and pertussis toxin. The stimulatory effect of PMA was inhibited by staurosporine but was not affected by pertussis toxin, whereas it was further promoted by genistein. Staurosporine and genistein inhibited superoxide production by sodium fluoride, but pertussis toxin did not affect it. PMA-induced $H_2O_2$ production was inhibited by staurosporine but was not affected by pertussis toxin. Genistein did not show a stimulatory effect on PMA-induced $H_2O_2$ production. Staurosporine and pertussis toxin inhibited HOCl production by C5a- or PMA, whereas genistein stimulated it. C5a-or PMA-induced myeloperoxidase release was inhibited by genistein, in this response the effect of pertussis toxin was not detected. Staurosporine did not affect the stimulatory effect of PMA on the release. Myeloperoxidase activity was markedly increased by genistein but was not affected by staurosporine and pertussis toxin. These results indicate that the respiratory burst of neutrophils may be regulated by protein kinase C and protein tyrosine kinase. Superoxide production induced by the direct activation of protein kinase C might be affected by protein tyrosine kinase oppositely. Genistein probably pro-motes HOCl production by activating myeloperoxidase.

  • PDF