The effect of water temperature (T) and body weight (W) on oxygen consumption of fasted starry flounder Platichthys stellatus was investigated in order to assess the metabolic response of this species at given conditions. The oxygen consumption rate (OCR) was measured under six different water temperatures (4, 7, 10, 13, 16 and $19^{\circ}C$) and at two different body weights (mean weight of fry group : 1.5 g; fingerling group : 37.4 g) at an interval of 5 minutes for 24 hours using a continuous flow-through respirometer. In each treatment three replicates were set up and a total 540 fish in fry groups and 90 fish in fingerling groups were used. The OCRs increased with increase of water temperature in both groups (p<0.001). Mean OCRs at 4, 7, 10, 13, 16 and $19^{\circ}C$ were 1386.0, 1601.7, 1741.0, 1799.2, 2239.1 and $2520.3mg\;O_2\;kg\;fish^{-1}\;h^{-1}$ in fry groups, and 83.8, 111.4, 126.3, 147.1, 187.7 and $221.3mg\;O_2\;kg\;fish^{-1}\;h^{-1}$ in fingerling groups, respectively. The OCRs decreased with increasing body weights at six different water temperatures (p<0.001). The relationship between water temperature and body weight is described by the following equation : OCR=1520.91+40.85T-49.22W ($r^2=0.95$, p<0.001). The energy loss by metabolic response increased with an increase in water temperature and a decrease in body weight (p<0.001). Mean energy loss rates by oxygen consumption at 4, 7, 10, 13, 16 and $19^{\circ}C$ were 907.9, 1046.5, 1141.6, 1177.0, 1467.3 and $1650.1kJ\;kg\;fish^{-1}\;d^{-1}$ in fry groups and 54.8, 73.0, 82.9, 96.2, 122.9 and $144.6kJ\;kg\;fish^{-1}\;d^{-1}$ in fingerling groups, respectively. The $Q_{10}$ values of fingerling groups were higher than those of fry groups at given temperature ranges. The $Q_{10}$ values at $4{\sim}7^{\circ}C$, $7{\sim}10^{\circ}C$, $10{\sim}13^{\circ}C$, $13{\sim}16^{\circ}C$ and $16{\sim}19^{\circ}C$ were 1.62, 1.32, 1.12, 2.07 and 1.48 in fry groups, and 2.59, 1.52, 1.67, 2.25 and 1.73 in fingerling groups, respectively.