• 제목/요약/키워드: C2C12 myotubes

검색결과 58건 처리시간 0.021초

모과추출물의 C2C12 근육세포에서 근분화 및 에너지대사조절인자 발현 증진 효과 연구 (Effects of Chaenomelis Fructus Extract on the regulation of myoblasts differentiation and the expression of biogenetic factors in C2C12 myotubes)

  • 강석용;현선영;권예담;박용기;정효원
    • 대한본초학회지
    • /
    • 제34권6호
    • /
    • pp.99-107
    • /
    • 2019
  • Objective : The present study was conducted to investigate the effects of Chaenomelis Fructus (CF) on the regulation of biogenesis in C2C12 mouse skeletal muscle cells. Methods : C2C12 myoblasts were differentiated into myotubes in 2% horse serum-containing medium for 5 days, and then treated with CF extract at different concentrations for 48 hr. The expression of muscle differentiation markers, myogenin and myosin heavy chain (MHC) and mitochondrial biogenesis-regulating factors, peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC1α), sirtuin1 (Sirt1), nuclear respiratory factor1 (NRF1) and transcription factor A, mitochondrial (TFAM), and the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) were determined in C2C12 myotubes by reverse transcriptase (RT)-polymerase chain reaction (RT-PCR) and western blot, respectively. The cellular glucose levels and total ATP contents were measured by cellular glucose uptake and ATP assays, respectively. Results : Treatment with CF extract (0.01, 0.02, and 0.05 mg/㎖) significantly increased the expression of MHC protein in C2C12 myotubes compared with non-treated cells. CF extract significantly increased the expression of PGC1α and TFAM in the myotubes. Also, CF extract significantly increased glucose uptake levels and ATP contents in the myotubes. Conclusion : CF extract can stimulate C2C12 myoblasts differentiation into myotubes and increase energy production through upregulation of the expression of mitochondrial biogenetic factors in C2C12 mouse skeletal muscle cell. This suggests that CF can help to improve skeletal muscle function with stimulation of the energy metabolism.

C2C12 근관세포에서 dexamethasone 및 hydrogen peroxide에 의한 근위축 유도 (Induction of Muscle Atrophy by Dexamethasone and Hydrogen Peroxide in Differentiated C2C12 Myotubes)

  • 박철;정진우;최영현
    • 생명과학회지
    • /
    • 제27권12호
    • /
    • pp.1479-1485
    • /
    • 2017
  • 일반적으로 노화, 영양부족 및 다양한 만성질환에 의하여 유발되는 근위축은 근육 단백질 합성 억제 및 분해증가를 통하여 근섬유 및 근육의 밀도를 감소시키는 것으로 알려져 있다. 본 연구에서는 근위축과 관련된 in vitro 실험을 위한 C2C12 근아세포에서 근관세포로의 분화과정을 확립하고, 분화가 유발된 C2C12 근관세포를 대상으로 dexamethasone 및 hydrogen peroxide에 의한 근위축 유발 및 관련 단백질들의 발현 변화를 조사하였다. 먼저 C2C12 근아세포에 분화배지를 처리하였을 경우 근관세포로 분화가 유발되었으며, 분화와 관련된 단백질인 myogenin 및 myoD의 발현이 증가하는 것으로 나타났다. 분화가 유발된 C2C12 근관세포에 세포독성이 없는 조건의 dexamethasone 및 hydrogen peroxide를 처리하였을 경우 근관의 지름이 감소하였으며, 이러한 현상은 musclespecific ubiquitin ligases인 MAFbx/atrogin-1 및 MuRF1의 발현 증가와 함께 muscle-specific transcription factor인 myogenin 및 MyoD의 발현 감소와 관련이 있다는 것을 확인하였다. 본 연구 결과는 근위축과 관련된 in vitro 실험 모델의 구축을 위한 최적의 분화조건 확립과 함께 dexamethasone 및 hydrogen peroxide를 근위축 유도제로 사용할 수 있는 가능성 을 제시하는 것이다.

자하거약침액과 산삼약침액의 C2C12 근아세포에서의 AMPK/SIRT1 신호전달을 통한 근 분화 유도 및 에너지 대사 증진 효과 비교 (Comparison of the Effects of Pharmacopuncture Extracts with Hominis placenta Pharmacopuncture and Wild Ginseng Pharmacopuncture on the Differentiation of C2C12 Myoblasts into Myotubes through Regulation of the AMPK/SIRT1 Signaling Pathway)

  • 황지혜;정효원
    • 한방비만학회지
    • /
    • 제23권2호
    • /
    • pp.60-68
    • /
    • 2023
  • Objectives: This study was conducted to compare the effects of Hominis placenta (Jahage, J) and wild ginseng (SanSam, S) pharmacopuncture drugs on muscle differentiation and energy metabolism regulation in C2C12 myotubes. Methods: The C2C12 myoblasts were differentiated into myotubes for 5 days by replacing in medium containing 2% horse serum and then treated with J and S pharmacopuncture extract at different concentrations for 24 hr. The expression of myosin heavy chain and energy metabolism-regulating factors, myosin heavy chain (MHC), nuclear respiratory factor-1 (NRF-1), and proliferator-activated receptor γ coactivator-1 alpha (PGC-1α) were determined in C2C12 myotubes by western blot. Additionally, the phosphorylation of AMPK and the expression of mitochondrial biogenesis, including sirtuin 1 (SIRT1) were determined in the myotubes. Results: As a result, treatment with J and S pharmacopuncture extract at 0.1 and 1 mg/mL increased the MHC expression in C2C12 myotubes compared with non-treated cells, but only S pharmacopuncture was shown a significant and distinct increase in the expression. Expression of TFAM and NRF-1 was also shown significant increases in S and J pharmacopuncture in C2C12 myotubes compared to non-treated cells. The phosphorylation of AMPK and the expression of PGC-1α and SIRT1 showed increased expression in S and J pharmacopuncture compared to non-treated cells. The effect of low-dose of J pharmacopuncture on the phosphorylated adenosine monophosphate-activated protein kinase (AMPK) and PGC-1α expression was greater than that of S pharmacopuncture. Conclusions: In conclusion, both J and S pharmacopuncture promote muscle differentiation in C2C12 myoblasts into myotubes and energy metabolism through the AMPK/SIRT1 signaling pathway. This indicates that the pharmacopuncture with tonic herbal medicines can help to improve skeletal muscle function.

C2C12 골격근 세포에서 백출의 분화 조절 효능 (Effect of Root of Atractylodes macrocephala Koidzumi on Myogenesis in C2C12 Cells)

  • 송미영
    • 한방비만학회지
    • /
    • 제15권1호
    • /
    • pp.38-44
    • /
    • 2015
  • Objective: Skeletal muscle is a crucial tissue from the perspectives of mitochondrial dysfunction and insulin resistance, it is formed by myogenesis which is dynamic multistep process to be myotubes. The authors could found that root of Atractylodes macrocephala Koidzumi (Atractylodis Rhizoma Alba, ARA) enhanced glucose and lipid metabolism in C2C12 myotubes via mitochondrial regulation. However its action in myogenesis process is not known. The aim of this work was the study of ARA on proliferation, differentiation and hypertrophy in C2C12 cells. Methods: To study proliferation phase, cells were incubated in growth medium with or without ARA (0.2 or 1.0 mg/ml) for 24 hours. To examine differentiation, at 70% confluence, cells were transferred in differentiation medium both with/without ARA (0.2 or 1.0 mg/ml) for 96 hours. And after 72 hours of differentiation, cells were treated with or without ARA (0.2 or 1.0 mg/ml) for 24 hours, the genesis of hypertrophy in myotubes were analyzed. Results: In proliferation phase, ARA could make difference in morphologic examination. In differentiation phase, it also made morphologic difference furthermore ARA (1.0 mg/ml) increased mRNA expressions of Myogenic regulatory factors and muscle-specific proteins synthesis. In late differentiation, ARA induced hypertrophic morphological changes in neo-formed myotubes. Conclusions: ARA might control cell cycle promoting myogenesis and hypertrophy in C2C12 cells.

C2C12 골격근 세포에서 육계, 부자, 갈근 물 추출물의 당대사 및 에너지 조절 효과 (The Effects of Cinnamomum cassia Blume, Aconitum carmichaeli Debx, and Pueraria lobata Benth on Glucose and Energy Metabolism in C2C12 Myotubes)

  • 송미영
    • 한방비만학회지
    • /
    • 제15권2호
    • /
    • pp.131-136
    • /
    • 2015
  • Objectives: The prevalence of obesity and metabolic syndrome is increasing worldwide. Regulation of cellular energy metabolis has the potential to be manipulated therapeutically to serve as a target for obesity and insulin resistance. Skeletal muscle is regarded as a target for regulation of energy metabolism and insulin resistance. In this study, the authors investigated the regulatory effect of (Cinnamomum cassia Blume, CCB), Aconitum carmichaeli Debx (ACD), and Benth (Pueraria lobata Benth, PLB) on energy and glucose metabolism in C2C12 myotubes. Methods: The water extracts of CCB, ACD, and PLB (0.5 mg/ml) were treated in differentiated C2C12 myotubes. The expressions of adenosine monophosphate-activated protein kinase (AMPK) and phosphorylation AMPK were detected with western blotting. Glucose metabolism was investigated with glucose uptake assay and glucose consumption assay, total adenosine triphosphate (ATP) content was also analyzed. Results: CCB, ACD, and PLB activated the phophorylation of AMPK, they also increased the glucose metabolism and total ATP contents in C2C12 myotubes. Conclusions: This study suggests that CCB, ACD, and PLB have the potential to increase energy and glucose metabolism in skeletal muscle.

C2C12 골격근 세포에서 갈근황금황련탕의 당 대사 및 에너지 조절 효과 (The Effects of Galgunhwanggumhwangryun-tang on Glucose and Energy Metabolism in C2C12 Myotubes)

  • 오지홍;한송이;임수경;김호준
    • 한방비만학회지
    • /
    • 제22권2호
    • /
    • pp.93-101
    • /
    • 2022
  • Objectives: This study aimed to observe the anti-diabetic effect and underlying mechanisms of Galgunhwanggumhwangryun-tang (GHH; Gegen-Qinlian-decoction) in the C2C12 myotubes. Methods: GHH (1.0 mg/ml) or metformin (0.75 mM) or insulin (100 nM) were treated in C2C12 myotubes after 4 days differentiation. The glucose uptake was assessed by 2-[N-(7-160 nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose uptake by C2C12 cells. The expression of adenosine monophosphate-activated protein kinase (AMPK) and phosphorylation AMPK (pAMPK) were measured by western blot. We also evaluated gene expression of glucose transporter type 4 (Slc2a4, formerly known as GLUT4), glucokinase (Gk), carnitine palmitoyltransferase IA (Cpt1a), nuclear respiratory factors 1 (Nrf1), mitochondrial transcription factor A (Tfam), and peroxisome proliferator-activated receptor γ coactivator 1α (Ppargc1a) by quantitative real-time polymerase chain reaction. Results: GHH promoted glucose uptake in C2C12 myotubes. The expression of AMPK protein, which plays an essential role in glucose metabolism, was increased by treatment with GHH. GHH treatment tended to increase gene expression of Slc2a4, Gk, and Nrf1 but was not statistically significant. However, GHH significantly improved Tfam and Ppargc1a gene expression in C2C12 myotubes. Conclusions: In summary, GHH treatment promoted glucose uptake in C2C12 myotubes. We suggest that these effects are associated with increased gene expression involved in mitochondrial biosynthesis and oxidative phosphorylation, such as Tfam and Ppargc1a, and increased expression of AMPK protein.

An Essential Role of the N-Terminal Region of ACSL1 in Linking Free Fatty Acids to Mitochondrial β-Oxidation in C2C12 Myotubes

  • Nan, Jinyan;Lee, Ji Seon;Lee, Seung-Ah;Lee, Dong-Sup;Park, Kyong Soo;Chung, Sung Soo
    • Molecules and Cells
    • /
    • 제44권9호
    • /
    • pp.637-646
    • /
    • 2021
  • Free fatty acids are converted to acyl-CoA by long-chain acyl-CoA synthetases (ACSLs) before entering into metabolic pathways for lipid biosynthesis or degradation. ACSL family members have highly conserved amino acid sequences except for their N-terminal regions. Several reports have shown that ACSL1, among the ACSLs, is located in mitochondria and mainly leads fatty acids to the β-oxidation pathway in various cell types. In this study, we investigated how ACSL1 was localized in mitochondria and whether ACSL1 overexpression affected fatty acid oxidation (FAO) rates in C2C12 myotubes. We generated an ACSL1 mutant in which the N-terminal 100 amino acids were deleted and compared its localization and function with those of the ACSL1 wild type. We found that ACSL1 adjoined the outer membrane of mitochondria through interaction of its N-terminal region with carnitine palmitoyltransferase-1b (CPT1b) in C2C12 myotubes. In addition, overexpressed ACSL1, but not the ACSL1 mutant, increased FAO, and ameliorated palmitate-induced insulin resistance in C2C12 myotubes. These results suggested that targeting of ACSL1 to mitochondria is essential in increasing FAO in myotubes, which can reduce insulin resistance in obesity and related metabolic disorders.

Ginsenoside compound K ameliorates palmitate-induced atrophy in C2C12 myotubes via promyogenic effects and AMPK/autophagy-mediated suppression of endoplasmic reticulum stress

  • Kim, Tae Jin;Pyun, Do Hyeon;Kim, Myeong Jun;Jeong, Ji Hoon;Abd El-Aty, A.M.;Jung, Tae Woo
    • Journal of Ginseng Research
    • /
    • 제46권3호
    • /
    • pp.444-453
    • /
    • 2022
  • Background: Compound K (CK) is among the protopanaxadiol (PPD)-type ginsenoside group, which produces multiple pharmacological effects. Herein, we examined the effects of CK on muscle atrophy under hyperlipidemic conditions along with its pro-myogenic effects. Further, the molecular pathways underlying the effects of CK on skeletal muscle have been justified. Methods: C2C12 myotubes were treated with palmitate and CK. C2C12 myoblasts were differentiated using CK for 4-5 days. For the in vivo experiments, CK was administered to mice fed on a high-fat diet for 8 weeks. The protein expression levels were analyzed using western blotting analysis. Target protein suppression was performed using small interfering (si) RNA transfection. Histological examination was performed using Jenner-Giemsa and H&E staining techniques. Results: CK treatment attenuated ER stress markers, such as eIF2a phosphorylation and CHOP expression and impaired myotube formation in palmitate-treated C2C12 myotubes and skeletal muscle of mice fed on HFD. CK treatment augmented AMPK along with autophagy markers in skeletal muscle cells in vitro and in vivo experiments. AMPK siRNA or 3-MA, an autophagy inhibitor, abrogated the impacts of CK in C2C12 myotubes. CK treatment augmented p38 and Akt phosphorylation, leading to an enhancement of C2C12 myogenesis. However, AMPK siRNA abolished the effects of CK in C2C12 myoblasts. Conclusion: These findings denote that CK prevents lipid-induced skeletal muscle apoptosis via AMPK/autophagy-mediated attenuation of ER stress and induction of myoblast differentiation. Therefore, we may suggest the use of CK as a potential therapeutic approach for treating muscle-wasting conditions associated with obesity.

Lactiplantibacillus plantarum LM1001 Improves Digestibility of Branched-Chain Amino Acids in Whey Proteins and Promotes Myogenesis in C2C12 Myotubes

  • Youngjin Lee;Yoon Ju So;Woo-Hyun Jung;Tae-Rahk Kim;Minn Sohn;Yu-Jin Jeong;Jee-Young Imm
    • 한국축산식품학회지
    • /
    • 제44권4호
    • /
    • pp.951-965
    • /
    • 2024
  • Lactiplantibacillus plantarum is a valuable potential probiotic species with various proven health-beneficial effects. L. plantarum LM1001 strain was selected among ten strains of L. plantarum based on proteolytic activity on whey proteins. L. plantarum LM1001 produced higher concentrations of total free amino acids and branched-chain amino acids (Ile, Leu, and Val) than other L. plantarum strains. Treatment of C2C12 myotubes with whey protein culture supernatant (1%, 2% and 3%, v/v) using L. plantarum LM1001 significantly increased the expression of myogenic regulatory factors, such as Myf-5, MyoD, and myogenin, reflecting the promotion of myotubes formation (p<0.05). L. plantarum LM1001 displayed β-galactosidase activity but did not produce harmful β-glucuronidase. Thus, the intake of whey protein together with L. plantarum LM1001 has the potential to aid protein digestion and utilization.

Inhibition of mitochondrial activity induces muscle fiber type change from slow to fast in C2C12 myotubes

  • Park, Su Hyun;Kim, Young Hwa;Lee, Hyun Jeong;Baek, Youl Chang;Kim, Min Seok;Jeong, Jin Young;Oh, Young Kyun;Park, Sung Kwon
    • 농업과학연구
    • /
    • 제44권4호
    • /
    • pp.586-594
    • /
    • 2017
  • Mitochondrial activity affects skeletal muscle energy metabolism and phenotype. To address whether mitochondrial activity can modulate muscle phenotype in vitro, protein expression of myosin heavy chain (MyHC) in C2C12 muscle cell lines was investigated after treated with antimycin A, an inhibitor of oxidative phosphorylation in mitochondria. Fully differentiated C2C12 myotubes were administrated with different concentration of antimycin A including 0, 100, 200, 500, 700, and 1000 ng/mL. After 72 h treatment, myosin heavy chain isoform expression and related enzyme activity (lactate dehydrogenase; LDH and creatine kinase) were analyzed. Administration of antimycin A changed expression of MyHC in C2C12 myotubes showing a shift from slow to fast twitching muscle type. Protein expression of MyHC type 2b (fast twitching muscle type) was decreased (P < 0.05) by antimycin A treatment (500, 700, and 1000 ng/mL) when compared with control group. Administration of antimycin A (1000 ng/mL), however, decreased (P < 0.05) MyHC type I (slow twitching muscle type). Interestingly, LDH activity was increased (P < 0.05) by antimycin A treatment. Results from our current study proposed a possibility that skeletal muscle phenotype, including MyHC and LDH activity, can be shifted from slow to fast twitching type by inhibiting the mitochondrial activity in C2C12 myotubes.