• 제목/요약/키워드: C2

Search Result 98,376, Processing Time 0.088 seconds

Synthesis and Characterization of C-meso and C-racemic Isomers of a Reinforced Tetraaza Macrocycle and Their Copper(II) Complexes

  • Jeong, Gyeong Rok;Kim, Juyoung;Kang, Shin-Geol;Jeong, Jong Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2043-2048
    • /
    • 2014
  • Two isomers of a new tetraaza macrotricycle 2,2,4,9,9,11-hexaazamethyl-1,5,8,12-tetraazatricyclo[$10.2.2^{5.8}$]-octadecane ($L^2$) containing additional N-$CH_2CH_2$-N linkages, C-meso-$L^2$ and C-racemic-$L^2$, have been prepared by the reaction of 1-bromo-2-chloroethane with C-meso-$L^1$ or C-racemic-$L^1$ ($L^1$ = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane). Both C-meso-$L^2$ and C-racemic-$L^2$ react with copper(II) ion to form $[Cu(C-meso-L^2)]^{2+}$ or $[Cu(C-racemic-L^2)]^{2+}$ in dehydrated ethanol, but do not with nickel(II) ion under similar conditions. Crystal structure of [Cu(C-racemic-$L^2$)($H_2O$)]$(ClO_4)_2$ shows that the complex has distorted square-pyramidal coordination geometry with an apically coordinated water molecule. Unexpectedly, the Cu-N distances [2.016(3)-2.030(3) ${\AA}$] of [Cu(C-racemic-$L^2$)($H_2O$)]$(ClO_4)_2$ are longer than those [1.992(3)-2.000(3) ${\AA}$] of [Cu(C-racemic-$L^1$)($H_2O$)]$(ClO_4)_2$. As a result, $[Cu(C-racemic-L^2)(H_2O)]^{2+}$ exhibits weaker ligand field strength than $[Cu(C-racemic-L^1)(H_2O)]^{2+}$. The copper(II) complexes readily react with CN- ion to yield the cyano-bridged dinuclear complex $[Cu_2(C-meso-L^2)_2CN]^{3+}$ or $[Cu_2(C-racemic-L^2)_2CN]^{3+}$. Spectra and chemical properties of $[Cu(C-meso-L^2)]^{2+}$ and $[Cu_2(C-meso-L^2)_2CN]^{3+}$ are not quite different from those of $[Cu(C-racemic-L^2)]^{2+}$ and $[Cu_2(C-racemic-L^2)_2CN]^{3+}$, respectively.

Change Of the Properties and the $Cr_3C_2$ Phase by Sintering Atmospere on $Ti(C, N)-Cr_3C_2$ Ceramics ($Ti(C, N)-Cr_3C_2$, 소결체의 오결분위기에 따른 물성과 $Cr_3C_2$ 상변화)

  • 김무경;이재의
    • Korean Journal of Crystallography
    • /
    • v.3 no.1
    • /
    • pp.44-52
    • /
    • 1992
  • The effect of sintering atmosphere on the final properties and phase change of Ti (C, N) Cr3c2 ceramics was investigated. In the case of sintering in vacuum and N2 atmosphere, densely packed sintered body was obtained. In Ar atmosphere, however, densification was much decreased compared to sintering in vacuum and Na. XRD analysis showed that in vacuum atmosphere Cr3c2 phase was changed to Cr7c3 Phase whereas in N2 and Ar atmosphere phase change was not occurred. That is, for vacuum sintering, the formation of defects in Ti(C, N) structure occurred through de-nitridation process, and it promotes the diffusion of C in Cr3c2 and raises the densification effects. But in the case of N2 atmosphere, densification phenomenon was considered to be due to sintering mechanism that enabled formation of free carbon and removal of oxygen by free carbon and existence of carbon in the grain boundary.

  • PDF

The Synthesis of $Ti_3$$SiC_2$by Si Melt Infiltration (용융 Si 침윤에 의한 $Ti_3$$SiC_2$의 합성)

  • 이승석;박상환;임병선;권혁보;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.11
    • /
    • pp.1114-1118
    • /
    • 2000
  • Ti 및 C 입자로 이루어진 다공질 성형체에 용융 Si의 침윤 및 반응으로 새로운 Ti$_3$SiC$_2$합성공정이 개발되었다. 용융 Si 침윤에 의한 Ti$_3$SiC$_2$합성공정에서는 이제까지 연구된 합성방법 보다 넓은 조성 범위에서 Ti$_3$SiC$_2$의 합성이 이루어졌다. 용융 Si을 활성 매질로 사용한 Ti$_3$SiC$_2$의 합성에서는 성형체 조성, 원료 입자 크기 및 침윤되는 용융 Si의 양에 따라 합성되는 상 및 각 합성상의 양이 다르게 나타났다. Ti:Si:C=3:1:6 조성을 제외한 모든 조성의 시편에서 Ti$_3$SiC$_2$상이 합성되었으며, 일부 조성을 제외한 모든 조성의 시편에서 Ti$_3$SiC$_2$, TiC 및 SiC가 함께 합성되었다. 작은 Ti 입자로 이루어진 성형체를 사용하여 합성한 시편에서 Ti$_3$SiC$_2$상의 합성이 용이하게 이루어졌으며, 성형체 조성 및 침윤되는 Si의 양이 화학양론적으로 Ti$_3$SiC$_2$에 근접한 조성을 갖는 시편에서 Ti$_3$SiC$_2$를 높은 수율로 합성할 수 있었다.

  • PDF

Performance Evaluation of DVB-C2 - The Standard for Next Generation Digital Cable Broadcasting (차세대 유럽형 디지털 케이블 방송 표준 DVB-C2 시스템 성능평가)

  • Lim, Hyoung-Muk;Yoon, Jae-Seon;Paik, Jong-Ho;Song, Hyoung-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11B
    • /
    • pp.1588-1595
    • /
    • 2010
  • DVB-C2 is the next generation digital broadcasting standard which will replace the analog cable broadcasting. LDPC and BCH significantly increase performance of forward error correction and allows for the application of higher constellation. Additionally, DVB-C2 is based on OFDM instead of single-carrier modulation, which gives additional flexibility and robustness in typical cable channels. This paper will give an introduction to the DVB-C2 system and spectral efficiency of DVB-C2 compare with DVB-C. Finally, The the simulation which is using BICM and OFDM structure show the performance of the DVB-C2.

Characterization and N-Terminal Amino Acid Sequence Analysis of Catechol 2,3-dioxygenase Isolated from the Aniline Degrading Bacterium, Delftia sp. JK-2 (Aniline 분해세균 Delftia sp. JK-2에서 분리된 catechol 2,3-dioxygenase의 특성 및 N-말단 아미노산 서열분석)

  • 황선영;송승열;오계헌
    • Korean Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The aim of this work was to investigate the characterization and sequence of catechol 2,3-dioxygenase isolated from Delfia sp. JK-2, which could utilize aniline as sole carbon, nitrogen and energy source. In initial experiments, several characteristics of C2,3O separated with ammonium sulfate precipitation, DEAE-sepharose were investigated. Specific activity of C2,3O was approximately 4.72 unit/mg. C2,3O demonstrated its enzyme activity to other substrates, catechol and 4-methylcatechol. The optimum temperature of C2,3O was $$Cu^{2+}$^{\circ}C$, and the optimal pH was approximately 8. Metal ions such as $Ag^{+}$, $Hg^{+}$, and $Cu^{2+}$ showed inhibitory effect on the activity of C2,3O. Molecular weight of the enzyme was determined to approximately 35 kDa by SDS-PAGE. N-terminal amino acid sequence of C2,3O was analyzed as $^{1}MGVMRIG-HASLKVMDMDA- AVRHYENV^{26}$, and exhibited high sequence homology with that of C2,30 from Pseudomonas sp. AW-2, Comamonas sp. JS765, Comamonas testosteroni and Burkholderia sp. RPO07. PCR product was amplified with the primers derived from N-terminal amino acid sequence. In this work, we found that the amino acid sequence of Delftia sp. JK-2 showed high sequence homology of C2,3O from Pseudomonas sp. AW-2 (100%) and Comamonas sp. JS765 (97%).

Overexpressed Drosophila DNA Methyltransferase 2 Isoform C Interacts with Hsp70 in Vivo

  • Roder, Karim
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.554-561
    • /
    • 2007
  • Shen and colleagues (Lin et al., 2004) have recently shown that overexpression of the Drosophila DNA methyltransferase 2 isoform C, dDnmt2c, extended life span of fruit flies, probably due to increased expression of small heat shock proteins such as Hsp22 or Hsp26. Here, I demonstrate with immunoprecipitations that overexpressed dDnmt2c interacts with endogenous Hsp70 protein in vivo in S2 cells. However, its C-terminal half, dDnmt2c(178-345) forms approximately 10-fold more Hsp70-containing protein complexe than wild-type dDnmt2c. Overexpressed dDnmt2c(178-345) but not the full length dDnmt2c is able to increase endogenous mRNA levels of the small heat shock proteins, Hsp26 and Hsp22. I provide evidence that dDnmt2c(178-345) increases Hsp26 promoter activity via two heat shock elements, HSE6 and HSE7. Simultaneously overexpressed Hsp40 or a dominant negative form of heat shock factor abrogates the dDnmt2c(178-345)-dependent increase in Hsp26 transcription. The data support a model in which the activation of heat shock factor normally found as an inactive monomer bound to chaperones is linked to the overexpressed C-terminus of dDnmt2c. Despite the differences observed in flies and S2 cells, these findings provide a possible explanation for the extended lifespan in dDnmt2c-overexpressing flies with increased levels of small heat shock proteins.

Oxidation Reaction of CO and $C_2H_4$ on Zinc Oxide (산화아연에서의 CO, $C_2H_4$의 산화반응)

  • Chong Soo Han;Hakze Chon
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.218-224
    • /
    • 1980
  • The surface reactions of CO and $C_2H_4$ with adsorbed oxygen on ZnO were studied by means of EPR spectroscopy. The EPR spectra of $O_2$ adsorbed ZnO at various temperatures were compared, and the signal at g = 2.014 was characterized as trapped $O^-$ at oxygen vacancy. CO and $C_2H_4$ react with $O^-$ at $25^{\circ}C$ and desorbed as $CO_2$ and $H_2O$ above $200^{\circ}C$. $O_2^-$ species interact with $C_2H_4$ about $100^{\circ}C$, but desorption of partial oxidation products also was not observed until the temperature was raised to $200^{\circ}C$.

  • PDF

Electrical Properties of SiC Composites by Transition Metal (천이금속에 따른 SiC계 복합체의 전기적 특성)

  • Shin, Yong-Deok;Seo, Je-Ho;Ju, Jin-Young;Ko, Tae-Hun;Kim, Young-Bek
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1303-1304
    • /
    • 2007
  • The composites were fabricated, respectively, using 61[vol.%]SiC-39[vol.%]$TiB_2$ and using 61[vol.%]SiC-39[vol.%]$ZrB_2$ powders with the liquid forming additives of 12[wt%] $Al_{2}O_{3}+Y_{2}O_{3}$ by hot pressing annealing at $1650[^{\circ}C]$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, $ZrB_2$ were not observed in this microstructure. ${\beta}{\rightarrow}{\alpha}$-SiC phase transformation was occurred on the SiC-$TiB_2$ and SiC-$ZrB_2$ composite. The relative density, the flexural strength and Young's modulus showed the highest value of 98.57[%], 226.06[Mpa] and 86.38[Gpa] in SiC-$ZrB_2$ composite at room temperature respectively. The electrical resistivity showed the lowest value of $7.96{\times}10^{-4}[{\Omega}{\cdot}cm]$ for SiC-$ZrB_2$ composite at $25[^{\circ}C]$. The electrical resistivity of the SiC-$TiB_2$ and SiC-$ZrB_2$ composite was all positive temperature coefficient resistance (PTCR) in the temperature ranges from $25[^{\circ}C]$ to $700[^{\circ}C]$. The resistance temperature coefficient of composite showed the value of $6.88{\times}10^{-3}/[^{\circ}C]$ and $3.57{\times}10^{-3}/[^{\circ}C]$ for SiC-$ZrB_2$ and SiC-$TiB_2$ composite in the temperature ranges from $25[^{\circ}C]$ to $700[^{\circ}C]$.

  • PDF

Development of Electroconductive SiC Ceramic Heater by Spark Plasma Sintering (방전플라즈마 소결에 의한 자기 통전식 SiC계 세라믹 발열체 개발)

  • Shin, Yong-Deok;Choi, Won-Seok;Ko, Tae-Hun;Lee, Jung-Hoon;Ju, Jin-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.770-776
    • /
    • 2009
  • The composites were fabricated by adding 0, 15, 30, 45[vol.%] $ZrB_2$ powders as a second phase to SiC matrix. The physical, mechanical and electrical properties of electroconductive SiC ceramic composites by spark plasma sintering(SPS) were investigated. Reactions between ${\beta}$-SiC and $ZrB_2$ were not observed in the XRD and the phase analysis of the electroconductive SiC ceramic composites. The relative density of mono ${\beta}$-SiC, ${\beta}$-SiC+15[vol.%]$ZrB_2$, ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]$ZrB_2$ composites are respectively 99.24[%], 87.53[%], 96.41[%] and 98.11[%] Phase analysis of the electroconductive SiC ceramic composites by XRD revealed mostly of ${\beta}$-SiC, $ZrB_2$ and weakly of $ZrO_2$ phase. The flexural strength showed the lowest of 114.44[MPa] for ${\beta}$-SiC+15[vol.%]$ZrB_2$ powders and showed the highest of 210.75[MPa] for composite no added with $ZrB_2$ powders at room temperature. The trend of the mechanical properties of the electroconductive SiC ceramic composites is accorded with the trend of the relative density. The electrical resistivity of the electroconductive SiC ceramic composites decreased with increased $ZrB_2$ contents. The electrical resistivity of mono ${\beta}$-SiC, ${\beta}$-SiC+15[vol.%]$ZrB_2$, ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]$ZrB_2$ composites are respectively $4.57{\times}10^{-1},\;2.13{\times}10^{-1},\;2.68{\times}10^{-2}\;and\;1.99{\times}10^{-2}[{\Omega}{\cdot}cm]$ at room temperature. The electrical resistivity of mono ${\beta}$-SiC and ${\beta}$-SiC+15[vol.%]$ZrB_2$ are negative temperature coefficient resistance(NTCR) in temperature ranges from $25[^{\circ}C]\;to\; 100[^{\circ}C]$. The electrical resistivity of ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]ZrB_2$ are positive temperature coefficient resistance(PTCR) in temperature ranges from $25[^{\circ}C]\;to\;100[^{\circ}C]$. It is convinced that ${\beta}$-SiC+30[vol.%]$ZrB_2$ composites by SPS for heater or ignitors can be applied.

Properties of $SiC-ZrB_2$ Electroconductive Ceramic Composites by Spark Plasma Sintering (SPS 소결에 의한 $SiC-ZrB_2$ 도전성 세라믹 복합체 특성)

  • Ju, Jin-Young;Lee, Hui-Seung;Jo, Sung-Man;Lee, Jung-Hoon;Kim, Cheol-Ho;Park, Jin-Hyoung;Shin, Yong-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1757-1763
    • /
    • 2009
  • The composites were fabricated by adding 0, 15, 20, 25[vol.%] Zirconium Diboride(hereafter, $ZrB_2$) powders as a second phase to Silicon Carbide(hereafter, SiC) matrix. The physical, mechanical and electrical properties of electroconductive SiC ceramic composites by Spark Plasma Sintering(hereafter, SPS) were examined. Reactions between ${\beta}-SiC$ and $ZrB_2$ were not observed in the XRD analysis. The relative density of mono SiC, SiC+15[vol.%]$ZrB_2$, SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ composites are 90.93[%], 74.62[%], 74.99[%] and 72.61[%], respectively. The XRD phase analysis of the electroconductive SiC ceramic composites reveals high of SiC and $ZrB_2$ and low of $ZrO_2$ phase. The lowest flexural strength, 108.79[MPa], shown in SiC+15[vol.%] $ZrB_2$ composite and the highest - 220.15[MPa] - in SiC+20[vol.%] $ZrB_2$composite at room temperature. The trend of the mechanical properties of the electroconductive SiC ceramic composites moves in accord with that of the relative density. The electrical resistivities of mono SiC, SiC+15[vol.%]$ZrB_2$, SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ composites are 4.57${\times}10^{-1}$, 2.13${\times}10^{-1}$, 1.53${\times}10^{-1}$ and 6.37${\times}10^{-2}$[${\Omega}$ cm] at room temperature, respectively. The electrical resistivity of mono SiC, SiC+15[vol.%]$ZrB_2$. SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ are Negative Temperature Coefficient Resistance(hereafter, NTCR) in temperature ranges from 25[$^{\circ}C$] to 100[$^{\circ}C$]. The declination of V-I characteristics of SiC+20[vol.%]$ZrB_2$ composite is 3.72${\times}10^{-1}$. It is convinced that SiC+20[vol.%]$ZrB_2$ composite by SPS can be applied for heater or electrode above 1000[$^{\circ}C$]