• Title/Summary/Keyword: C1-2 fusion

Search Result 544, Processing Time 0.034 seconds

Effect of trichostatin A on NF-κB DNA binding activity and myogenesis in C2Cl2 skeletal muscle Precursor cell (C2C12 근육아세포에서 trichostatin A에 의한 NF-κB DNA 결합 활성과 근육발생에 미치는 영향)

  • 임운기;김경창;신혜자
    • Journal of Life Science
    • /
    • v.12 no.1
    • /
    • pp.55-60
    • /
    • 2002
  • The differentiation of skeletal muscle precursor cells in culture is marked by the transcriptional activation of muscle-specific genes and the morphological differentiation of myoblast into multinucleate myotube. In this study, we examined the effect of TSA (Trichostatin A) on WF-kB DNA binding activity and muscle cell fusion in the process of myogenesis. Under TSA treatment, C2C12 myoblast could not fuse to myotube and its NF-kB DNA binding activity was also blocked. To investigate whether these phenomenons were affected by TSA in direct or not, differentiation media (DM) used to differentiate cells without TSA was concentrated and added to C2C12 myoblast with TSA simultaneously. C2C12 myoblast was fused to myotube and NF-kB DNA binding activity was recovered. These results suggest that TSA affects on the differentiation of myoblast, perhaps through several factors, by inhibiting myoblst fusion and blocking NF-kB DNA binding activity.

Isolation, Culture, and Fusion of Nicotiana Protoplasts (원형질체 분리, 배양 및 Nicotiana 종간 세포융합에 관한 연구)

  • 윤경은;김준철;최상수;손세호
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.1 no.2
    • /
    • pp.138-149
    • /
    • 1979
  • For the preliminary study on tobacco cell fusion as one of new breeding techniques, the conditions that would be most effective in isolation, fusion, and culture of tobacco protoplasts were examined ; 1. The enzyme solution of 0.5% macerozyme and 2% cellulase( or meicellase) was the most economic and efficient in isolating protoplasts from tobacco leaves. 2. The proper incubation period of tobacco leaves in cell wall digesting solution was 4 hours. 3. As an osmotic stabilizer, sorbitol or mannitol solutions were employed. The concentration of 0.5~0.7 M of either hexitol gave satisfying results as the osmotic stabilizer. 4. The calcium concentration appeared to be an important factor in protoplast fusion. The adhesion of protoplasts was enhanced by enrichment of calcium ion in PEG solution. The highest frequency of protoplast fusion was obtained when tobacco protoplasts were incubated in PEG solution. containing 9mM CaCl2. 5. Cell divisions of the isolated protoplasts were continued and have generated colonies when they were grown on B-5 medium at 28$^{\circ}C$.

  • PDF

Characterization of KRC-108 as a TrkA Kinase Inhibitor with Anti-Tumor Effects

  • Lee, Hyo Jeong;Moon, Yeongyu;Choi, Jungil;Heo, Jeong Doo;Kim, Sekwang;Nallapaneni, Hari Krishna;Chin, Young-Won;Lee, Jongkook;Han, Sun-Young
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.360-367
    • /
    • 2022
  • Tropomyosin receptor kinase A (TrkA) protein is a receptor tyrosine kinase encoded by the NTRK1 gene. TrkA signaling mediates the proliferation, differentiation, and survival of neurons and other cells following stimulation by its ligand, the nerve growth factor. Chromosomal rearrangements of the NTRK1 gene result in the generation of TrkA fusion protein, which is known to cause deregulation of TrkA signaling. Targeting TrkA activity represents a promising strategy for the treatment of cancers that harbor the TrkA fusion protein. In this study, we evaluated the TrkA-inhibitory activity of the benzoxazole compound KRC-108. KRC-108 inhibited TrkA activity in an in vitro kinase assay, and suppressed the growth of KM12C colon cancer cells harboring an NTRK1 gene fusion. KRC-108 treatment induced cell cycle arrest, apoptotic cell death, and autophagy. KRC-108 suppressed the phosphorylation of downstream signaling molecules of TrkA, including Akt, phospholipase Cγ, and ERK1/2. Furthermore, KRC-108 exhibited antitumor activity in vivo in a KM12C cell xenograft model. These results indicate that KRC-108 may be a promising therapeutic agent for Trk fusion-positive cancers.

Studies on Protoplast Formation and Regeneration of Coriolus versicolor (구름버섯의 원형질체(原形質體) 형성(形成)과 재생(再生)에 관한 연구(硏究))

  • Bok, Jin-Woo;Park, Seol-Hee;Choi, Eung-Chil;Kim, Byong-Kak;Yoo, Young-Bok
    • The Korean Journal of Mycology
    • /
    • v.18 no.3
    • /
    • pp.115-126
    • /
    • 1990
  • To establish basic techniques for protoplast fusion of Coriolus versicolor several factors affecting protoplast formation and regeneration were investigated. Protoplast isolation was at maximum with 2.5-day cultured mycelia of C. versicolor treated with the combination of two enzymes, Novozym 234 (10 mg/ml) and cellulase Onozuka R-10 (15 mg/ml), for 3-4.5 hours at $30^{\circ}C.$ As an osmotic stabilizer for stabilizing the protoplast, 0.6 M sucrose was the best for formation and regeneration of the protoplast from the mycelia of the fungus and the regeneration frequency was 3.48%. Protoplast fusion was made by a modified method of Peberdy using PEG (M.W. 4,000). The fusion frequency between two mutants of C. versicolor was 1.86% and the fusion products showed differences in growth rate and colony morphology.

  • PDF

The Study on the Preparation of PSZ from the Domestic Zircon Sand its Applications I. Preparation of the High Purity Zirconia Powder form Domestic Zircon Sand (국산 지르콘사로부터 부분 안정화 지르코니아의 제조 및 그 응용에 관한 연구 I. 국산 지르콘사로부터 고순도 지르코니아 분말의 제조)

  • Kim. H.;Sunwoo, S.;Shin, K.C.;Hwang, K.H.
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.2
    • /
    • pp.186-192
    • /
    • 1987
  • ZrO2 powders having high purity were prepared from domestic zircon sand using the caustic fusion method and the soda ash sintering process. In the caustic fusion method, ZrO2 recovery was reached to 96% when 100/140 mesh zircon was reacted with NaOH at the NaOH/Zircon mole ratio 6 and at 650$^{\circ}C$ for 2 hours. And in the soda ash sintering process, ZrO2 was recovered to 88.5% when -325 mesh zircon was reacted with Na2CO3 at the Na2CO3/Zircon mole ratio 1.1 and 1050$^{\circ}C$ for 2 hours. In both cases, Zr component was extracted to ZrOCl2, subsequently crystallized to ZrOCl2$.$8H2O to increase the purity, and converted to ZrO2 by precipitation. And to increase the sinter ability of powder, Cl- ion was removed and strong agglomeration was avoided by methanol distribution of Zr(OH)4 precipitates.

  • PDF

Defining the N-Linked Glycosylation Site of Hantaan Virus Envelope Glycoproteins Essential for Cell Fusion

  • Zheng, Feng;Ma, Lixian;Shao, Lihua;Wang, Gang;Chen, Fengzhe;Zhang, Ying;Yang, Song
    • Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.41-47
    • /
    • 2007
  • The Hantaan virus (HTNV) is an enveloped virus that is capable of inducing low pH-dependent cell fusion. We molecularly cloned the viral glycoprotein (GP) and nucleocapsid (NP) cDNA of HTNV and expressed them in Vero E6 cells under the control of a CMV promoter. The viral gene expression was assessed using an indirect immunofluorescence assay and immunoprecipitation. The transfected Vero E6 cells expressing GPs, but not those expressing NP, fused and formed a syncytium following exposure to a low pH. Monoclonal antibodies (MAbs) against envelope GPs inhibited cell fusion, whereas MAbs against NP did not. We also investigated the N-linked glycosylation of HTNV GPs and its role in cell fusion. The envelope GPs of HTNV are modified by N-linked glycosylation at five sites: four sites on G1 (N134, N235, N347, and N399) and one site on G2 (N928). Site-directed mutagenesis was used to construct eight GP gene mutants, including five single N-glycosylation site mutants and three double-site mutants, which were then expressed in Vero E6 cells. The oligosaccharide chain on residue N928 of G2 was found to be crucial for cell fusion after exposure to a low pH. These results suggest that G2 is likely to be the fusion protein of HTNV.

Molecular Cloning and Characterization of Serine/Threonine Phosphatase from Rat Brain

  • Yoo, Byoung-Kwon;Lee, Sang-Bong;Shin, Chan-Young;Kim, Won-Ki;Kim, Sung-Jin;Kwang, Ho-Ko
    • Biomolecules & Therapeutics
    • /
    • v.8 no.2
    • /
    • pp.153-159
    • /
    • 2000
  • A novel serine/threonine protein phosphatase with EF-hand motif, which belongs to PPEF family was partially cloned from rat brain cDNA by employing RT-PCR method. The size of the amplified clone was 1.6kbp. The amplified DNA was subcloned into pGEM-T-Easy vector and the resulting plasmid was maned as pGEM-rPPEF2. The nucleuotide sequence is shared by 88% with that of mouse PPEF-2 cDNA, and the deduced amino acid sequence reveal 92% homology with that of mouse PPEF-2 cDNA. The N-terminal region of the cloned rat brain PPEF contains a putative phosphatase catalytic domain (PP domain) and the C-terminal region contains multiple $Ca^{2+}$ binding sites (EF region). The putative catalytic domin (PP) and the EF-hand motif (EF) regions were subcloned into pGEX4T-1 and were overexpressed in E. coli DH5 as glutathione-S-transferase (GST) fusion proteins. Expression of the desired fusion protein was identified by SDS-PAGE and also by immunoblot analysis using monoclonal antibody against GST. The recombinant proteins were purified by glutathione-agarose chromatography. This report is first to demonstrate the cloning of PPEF family from rat brain tissues. The clone reported here would be invaluable for the investigation of the role of this new type-phosphatase in rat brain.

  • PDF

Obatoclax Regulates the Proliferation and Fusion of Osteoclast Precursors through the Inhibition of ERK Activation by RANKL

  • Oh, Ju Hee;Lee, Jae Yoon;Park, Jin Hyeong;No, Jeong Hyeon;Lee, Na Kyung
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.279-284
    • /
    • 2015
  • Obatoclax, a pan-Bcl2 inhibitor, shows antitumor activities in various solid malignancies. Bcl2-deficient mice have shown the importance of Bcl2 in osteoclasts, as the bone mass of the mice was increased by the induced apoptosis of osteoclasts. Despite the importance of Bcl2, the effects of obatoclax on the proliferation and differentiation of osteoclast precursors have not been studied extensively. Here, we describe the anti-proliferative effects of obatoclax on osteoclast precursors and its negative role on fusion of the cells. Stimulation with low doses of obatoclax significantly suppressed the proliferation of osteoclast precursors in a dose-dependent manner while the apoptosis was markedly increased. Its stimulation was sufficient to block the activation of ERK MAP kinase by RANKL. The same was true when PD98059, an ERK inhibitor, was administered to osteoclast precursors. The activation of JNK1/2 and p38 MAP kinase, necessary for osteoclast differentiation, by RANKL was not affected by obatoclax. Interestingly, whereas the number of TRAP-positive mononuclear cells was increased by both obatoclax and PD98059, fused, multinucleated cells larger than $100{\pm}m$ in diameter containing more than 20 nuclei were completely reduced. Consistently, obatoclax failed to regulate the expression of osteoclast marker genes, including c-Fos, TRAP, RANK and CtsK. Instead, the expression of DC-STAMP and Atp6v0d2, genes that regulate osteoclast fusion, by RANKL was significantly abrogated by both obatoclax and PD98059. Taken together, these results suggest that obatoclax down-regulates the proliferation and fusion of osteoclast precursors through the inhibition of the ERK1/2 MAP kinase pathway.

The Binding Properties of Glycosylated and Non- Glycosylated Tim-3 Molecules on $CD4^+CD25^+$T Cells

  • Lee, Mi-Jin;Heo, Yoo-Mi;Hong, Seung-Ho;Kim, Kyong-Min;Park, Sun
    • IMMUNE NETWORK
    • /
    • v.9 no.2
    • /
    • pp.58-63
    • /
    • 2009
  • Background: T cell immunoglobulin and mucin domain containing 3 protein (Tim-3) expressed on terminally differentiated Th1 cells plays a suppressive role in Th1-mediated immune responses. Recently, it has been shown that N-glycosylation affects the binding activity of the Tim-3-Ig fusion protein to its ligand, galectin-9, but the binding properties of non-glycosylated Tim-3 on $CD4^+CD25^+$T cells has not been fully examined. In this study, we produced recombinant Tim-3-Ig fusion proteins in different cellular sources and its N-glycosylation mutant forms to evaluate their binding activities to $CD4^+CD25^+$T cells. Methods: We isolated and cloned Tim-3 cDNA from BALB/C mouse splenocytes. Then, we constructed a mammalian expression vector and a prokaryotic expression vector for the Tim-3-Ig fusion protein. Using a site directed mutagenesis method, plasmid vectors for Tim-3-Ig N-glycosylation mutant expression were produced. The recombinant protein was purified by protein A sepharose column chromatography. The binding activity of Tim-3-Ig fusion protein to $CD4^+CD25^+$T cells was analyzed using flow cytometry. Results: We found that the nonglycosylated Tim-3-Ig fusion proteins expressed in bacteria bound to $CD4^+CD25^+$T cells similarly to the glycosylated Tim-3-Ig protein produced in CHO cells. Further, three N-glycosylation mutant forms (N53Q, N100Q, N53/100Q) of Tim-3-Ig showed similar binding activities to those of wild type glycosylated Tim-3-Ig. Conclusion: Our results suggest that N-glycosylation of Tim-3 may not affect its binding activity to ligands expressed on $CD4^+CD25^+$T cells.

Protoplast Formation and Fusion between Saccharomyces cerevisiae D-71 and Zygosaccharomyces rouxii SR-S (Saccharomyces cerevisiae D-71과 Zygosaccharomyces rouxii SR-S의 원형질체 형성과 융합)

  • 이종수;김찬조
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.2
    • /
    • pp.142-149
    • /
    • 1988
  • This experiment was carried out to obtain a hybrid with potent ethanol fermenting ability, by means of protoplast fusion between a thermophilic strain (D-71) of Saccharomyces cerevisiae and an osmotolerant strain (SR-S) of Zygosaccharomyces rouxii. The conditions for formation of protoplasts from both strains and for their fusion and regeneration were studied. Favorable conditions for formation of protoplasts from Saccharomyces cerevisiae D-71 were : treatment of the cells at late-exponential phase with 2-mercaptoethanol (l% v/v) for 10 minutes in the presence of 0.5M sorbitol, then incubation for 60 minutes in the set medium containing Zymolyase-20T (4mg/$m\ell$) ; and from Zygosaccharomyces rouxii SR-S were : treatment of the cells at mid-exponential phase with 2-mercaptoethanol (1% v/v) for 10 minutes in the presence of 0.5M or 1M mannitol, then incubation for 120 minutes in the set medium containing Zymolyase-20T(4mg/$m\ell$). The protoplasts of parental cells were fused in the presence of 20mM CaCl$_2$, 0.5M sorbitol and 40% of polyethyleneglycol (M.W 4000), then fusants obtained were selected as regenerated colonies which embedded and grown in the minimal medium containing 3% of agar. The frequencies of fusant formation were 1.2$\times$10$^{-6}$ to 9.1$\times$10$^{-6}$ for the regenerated protoplast.

  • PDF