• Title/Summary/Keyword: C. polykrikoides blooms

Search Result 56, Processing Time 0.019 seconds

Characteristics of Long-term Water Quality Variations and Cochlodinium polykrikoides Blooms in the Mid-southern Coastal Waters of Korea (한국 남해 중부 해역의 장기수질환경변화와 Cochlodinium polykrikoides 적조 발생의 특징)

  • Lee, Moon-Ock
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.1
    • /
    • pp.19-31
    • /
    • 2011
  • This study has examined the water quality environment of six areas in the mid-southern coastal waters of Korea in order to find the significance between water quality and algal blooms of the area, based on the last 17 years of data offered by the National Fisheries Research and Development Institute. Water temperature in these areas fluctuated with a three to five year of period, and revealed little yearly variations at the surface layer while slowly decreasing at the bottom layer. On the other hand, salinity tended to increase both the surface and bottom layers. Algal blooms had a tendency to decrease in their outbreaks and causative species, with a peak of the middle of 1990s. C. polykrikoides prevailed in the entire areas, and in particular, almost annually appeared in Goheung coastal area since 1995. C. polykrikoides blooms occurred when a mean water temperature was approximately $26^{\circ}C$, and salinities were between 31.00 and 31.50 but exceptionally 28.68 in Yeosu Coast. However, the concentrations of DIN, DIP, TN, TP, including DO, turned out not to be such significant factors for the outbreaks of C. polykrikoides blooms. Therefore, water temperature was judged as the most controlling factor for the outbreak of C. polykrikoides blooms.

Application of DNA Content and Total Protein Concentration to Predict Blooms Caused by Cochlodinium polykrikoides (Dinophyceae) in Korean Coastal Waters (total DNA 및 단백질 함량변화에 의한 C. polykrikoides 조기적조 예측 응용)

  • Cho, Eun-Seob;Park, Yong-Kyu
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.255-262
    • /
    • 2004
  • We applied nuclear DNA content stained with 4'-6'-diamidino-2-phenylindole (DAPI) and total protein concentration to predict the existence of Cochlodinium polykrikoides before huge blooms occurred, based on a short-term survey at sites in the South Sea. Fluctuations in environmental conditions and nutrients (nitrate, nitrite, and phosphate) were of a similar range, regardless of sampling sites or early and middle field observations. However, C. polykrikoides abundance was significantly different depending on the station, with a higher cell density of 34, 62, and 57 cells L$^{-1}$ at Stn C2, C5, and C6, respectively than what was found in early August, 2000. In mid August, 2000, the highest cell density of 547 cells L$^{-1}$ at Stn C3 was observed. The relationship between C. polykrikoides abundance, DAPI-stained DNA content, and total protein concentration was a positive correlation coefficient, in particular a higher positive correlation was exposed to even a smaller abundance of C. polykrikoides. These results suggest that DNA stained by DAPI and total protein concentration could play an important index in easily predicting the presence of C. polykrikoides before blooms.

Countermeasure and Outbreak Mechanism of Cochlodinium polykrikoides red tide 1. Environmental characteristics on outbreak and disappearanceof C. polykrikoides bloom (Cochlodinium polykrikoides 적조 발생기작과 대책 1. Cochlodinium polykrikoides 적조 발생과 소멸의 환경특성)

  • Park, Young-Tae;Kim, Young-Sug;Kim, Kui-Young;Park, Jong-Soo;Go, Woo-Jin;Jo, Yeong-Jo;Park, Seong-Yoon;Lee, Young-Sik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.4
    • /
    • pp.259-264
    • /
    • 2001
  • Typhoon and neap tide on Cochlodinium polykrikoides bloom and water temperature on disappearance of C. polykrikoides bloom were investigated to elucidate the outbreak mechanism of C. polykrikoides blooms at Naro and Namhae coastal area in South Sea of Korea. The first observation of C. polykrikoides blooms were observed when thermocline was disappeared by typhoon, tide, etc. The first blooms of C. polykrikoides were observed on neap tide or before one day from neap tide in 1996-1998 and 2000. However, thermocline was disappeared by typhoon in 1994 and 1999, the first blooms were observed early 12-30 day than 1996-1998 and 2000. The main reason of disappearance of C. polykrikoides blooms after typhoon on 1997-2000 seems to be other environmental change by typhoon rather than low water temperature. In the future, the first C. polykrikoides bloom will be appear around the first neap tide of latter part of August with breaking down of thermocline, but if the thermocline be collapsed by typhoon in July, the C. polykrikoides bloom will be appear at beginning of August. The outbreak of C. polykrikoides blooms will be explain as follows: The vegetative cells, which was germinated by environmental change or already exist in surface water at low level, input to the surface water, and then nutrients and trace metals which were suppled from out side of C. polykrikoides bloom area inflow to surface. The vegetative cells are growth by the nutrients and trace metals at suitable environmental conditions e.g. water temperature, salinity, and sufficient light.

  • PDF

The Spatio-Temporal Progress of Cochlodinium polykrikoides Blooms in the Coastal Waters of Korea (한국연안의 Cochlodinium polykrikoides 적조 발생과 변천)

  • KIM Hak Gyoon;JUNG Chang-Su;LIM Wol-Ae;LEE Chang-Kyu;KIM Sook-Yang;YOUN Sung-Hwa;CHO Yong-Chul;LEE Sam-Geun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.691-696
    • /
    • 2001
  • The first bloom of Cochlodinium polykrikoides was observed in the estuary of Nak-dong river near Pusan in Korea in 1982. Since then, there have been irregular blooms, sometimes spread over the adjoining .to Jinhae Bay even though it was confined to the bay and its vicinites until 1988. It had been outbroken frequently in the adjacent to Tongyeong, Geoje, Namhae and Yeosu coast since 1989. It became widespread along the coast of the South Sea to the East Sea of Korea in 1995. And in October in 1998 and 1999, the bloom had been taken place in Kunsan coast of Yellow Sea. According to the observations in situ, the frequency of occurrence has been increased year by year. The prevailing bloom season was from July to October with peak in September. The duration of the bloom became longer with the year, and sometimes lasted more than one month. The density of the bloom did not exceed 5,000 cells $mL^{-1}$until 1991, but it increased year by year to the highest of 43,000 cells $mL^{-1}$ in 1999. With respect to the assembleges of species in dinoflagellate blooms, C. polykrikoides was one of the important species with diatoms and the other dinoflagellates in 1980s. But since then, C. polykrikoides made an almost monospecific bloom. Based on two decadal observations of C. polykrikoides blooms, it became widespread throughout whole coast of the Korea, persistent for about one or two month long in some year, and monospecisc high density blooms. It was reported that significant fish mortalities were caused by this harmful dinoflagellate blooms especially in the fishfarms accomodating intensive fish cages such as Tongyeong, Namhae-do, Geoje, Yeosu and Geomun-do fishfarming yards. This widespread and persistent harmful algal blooms impede the development of marine aquaculture industries.

  • PDF

Variation in Harmful Algal Blooms in Korean coastal waters since 1970 (1970년대 이후 한국 연안의 적조 발생 변화)

  • Lim, Weol-Ae;Go, Woo-Jin;Kim, Kyoung-Yeon;Park, Jong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.523-530
    • /
    • 2020
  • Based on the results of harmful algal blooms (HABs) monitoring by the National Institute of Fisheries Science and local governments, the effects of changes in the marine environment on HABs are described. Since the beginning of HABs monitoring in 1972, they continued to increase from the 1980s to the 1990s. After the largest number of HAB incidents (109) in 1998; the trend declined until the 2010s. Most HABs in the 1970s were caused by diatoms. In the 1980s, coastal dinoflagellates caused HABs; Cochlodinium polykrikoides blooms have been occurring continuously since 1993. There are three HAB species that cause damage to fisheries in Korea. The high-density bloom of Karenia mikimotoi caused mass mortality in shellfish in Jinhae Bay in 1981. Karenia sp. blooms occurring around Tongyeong in 1992 killed aquaculture fish. Since the occurrence of the largest fisheries damage of KRW 76.6 billion in 1995 caused by C. polykrikoides blooms, they have been occurring continuously. The concentration of nutrients in coastal waters was the highest in the 1980s and has declined since the mid-1990s. This reduction in nutrient concentration is a good explanation for the decreasing number of HABs. Since 2016, a summer high water temperature of 30℃ or more has appeared, and the range and scale of C. polykrikoides blooms have been greatly reduced. In 2016, K. mikimotoi blooms occurred around Wando, Jangheung and Goheung and small scale blooms of C. polykrikoides occurred around Yeosu. There were no C. polykrikoides blooms in 2017; however, Alexandrium affine blooms occurred from Yeosu to Tongyeong. There was a small-scale blooms of C. polykrikoides in 2018 compared to those in the previous years. Our results show that reduction in nutrients and the high water temperature owing to climate change are a good explanation for variation in HABs in Korean coastal waters.

Marine Environments in the Neighborhood of the Narodo as the First Outbreak Region of Cochlodinium polykrikoides Blooms (Cochlodinium polykrikoides 적조의 최초발생해역인 나로도 주변 해역의 해양환경)

  • Lee, Moon-Ock;Moon, Jin-Han
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.113-123
    • /
    • 2008
  • We have analyzed a long term data of marine environments, red tide information and meteorology acquired by NFRDI and KMA, in order to understand the characteristics of marine environments in the Narodo coastal waters which is known to be the first outbreak region of Cochlodinium polykrikoides blooms. During the period of from 1992 to 2007, Cochlodinium polykrikoides blooms have first occurred more often in August. However, the outbreak time of the blooms tended to be earlier annually, and in addition, the surface salinity also had a tendency to increase. Consequently, it suggested that there might be a relationship between the transition of the outbreak time of the blooms and salinity. On the other hand, insolation was relatively rich but precipitation was relatively scarce in Gohung Province, compared to Yeosu or Tongyeong, when Cochlodinium polykrikoides blooms first occur in Narodo coastal waters. Average water temperature and salinity in August in Narodo coastal waters were all higher than those in Gamak and Jinhae bays, suggesting that Narodo coastal waters are a region of relatively high water temperature and high salinity. Also, concentrations of nutrients and chlorophyll- a were significantly low than those in Jinhae Bay, which is known to be a eutrophicated region, while the overall water quality seemed to be similar to Gamak Bay. The results of PCA(Principal Component Analysis) proved that insolation and water temperature are the most important factors for the outbreak of Cochlodinium polykrikoides blooms in Narodo coastal waters while concentrations of COD and dissolved oxygen are secondly important. Furthermore, typhoons also appeared to be one of most important factors for the outbreak of Cochlodinium polykrikoides blooms.

  • PDF

Characteristics of Cochlodinium polykrikoides Bloom in Southeast Coastal Waters of Korea, 2008 (2008년 남해동부해역의 Cochlodinium polykrikoides 적조발생 특성)

  • Lim, Weol-Ae;Lee, Young-Sik;Park, Jong-Gyu
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.3
    • /
    • pp.155-162
    • /
    • 2009
  • To characterize the initiation, propagation and termination of Cochlodinium polykrikoides blooms in the southeast coastal waters of Korea, 2008, we analyzed the data set of phytoplankton composition, physical and chemical water properties, and meterological data. C. polykrikoides bloom in 2008 were long lasting and restricted to the coastal area with a low density. Our results indicate that C. polykrikoides blooms were affected by the atypical cold waters occurring in east-south coastal water in the early July. The cold water masses probably protected the free living cells of C. polykrikoides from entering into the coastal area from offshore waters as a pelagic seed population. The low density blooms of small scale established possibly by the germination of C. polykrikoides cyst in shallow coastal bottom could have not spread over because of the weak wind and low nutrient concentrations caused by severe drought in July and September.

Mortality of Fishes and Shellfishes to Harmful Algal Blooms

  • Lee Sam Geun;Kim Hak Gyoon;Cho Eun Seob;Lee Chang Kyu
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.3
    • /
    • pp.160-163
    • /
    • 2003
  • Mortality of several species of fish and shellfish exposed to Harmful Algal Blooms (HABs) caused by Cochlodinium polykrikoides, Heterosigam akashiwo, Alexandrium tamarense, Eutreptiella gymnastica, Heterocapsa triquetra and Prorocentrum micans was studied. When fish were exposed to a cell density of 8,000 cells $mL^{-1}$ in C. polykrikoides, $35\%$ of flatfish and darkbanded rockfish died within 48 hrs. However, jacopever rockfish had mortality of higher than $85\%$. Rock bream, filefish and red sea bream showed $100\%$ mortality within 10 hrs with an exposure cell density of 8,000 cells $mL^{-1}$. The rest of HABs except for C. polykrikoides showed that there was no fish and shellfish death throughout the 48 hrs even in the maximum cell density of 100,000 cells $mL^{-1}$ These results imply that C. polykrikoides can have a serious impact on fish mortality and it is regarded as an ichthyotoxic dinoflagellate. The fish death may be attributed to anoxia caused by a combination of the production of reactive oxygen species (ROS) and polysaccharide from C. polykrikoides during blooms.

Ichthyotoxicity of a Harmful Dinoflagellate Cochlodinium polykrikoides: Aspect of Hematological Responses of Fish Exposed to Algal Blooms

  • Kim Chang Sook;Bae Heon Meen;Yun Seong Jong;Cho Yong Chul;Kim Hak Gyoon
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.2
    • /
    • pp.111-117
    • /
    • 2000
  • To clarify the ichthyotoxic mechanisms of a harmful dinoflagellate Cochlodinium polykrikoides, hematological responses of the flounder Paralichthys olivaceus and red sea bream Pagrus major exposed to this algal bloom were investigated. The mortality of red sea bream was considerably larger than that of flounder, and the threshold lethal density of C. polykrikoides to the test fish was approximately 3,000 cells/ml. Blood $PO_2$declined in proportion to the increasing density of algal cells. The blood $PO_2$ of moribund fish was about $40-60\% of control test fish. Particularly, the fishes began to be killed when the blood $PO_2$ fell below 30-40 mmHg. However, the blood pH dropped almost 1.0 unit just before fish kill. Hemoglobin and hematocrit levels of fish exposed to C. polykrikoides of 5,000 cells/ml for 24 h and of moribund fish did not show great difference. The concentrations of plasma $Na^+$, $K^+$ and $Cl^-$ were slightly elevated to different magnitudes except $Ca^{2+}$ and plasma osmolality was also increased in Cochlodinium-exposed fish. In the plasma cortisol level, these values of moribund flounder and red sea bream were 4- 5 times higher than those of control fish. These results suggest that the drop of blood $PO_2$ was may be one of the principal causes of fish kill by C. polykrikoides, and the changes of other hematological parameters were secondary responses elicited by the decrease in blood $PO_2$.

  • PDF

Distributions of Water Temperature and Salinity in the Korea Southern Coastal Water During Cochlodinium polykrikoides Blooms (C. polykrikoides 적조 발생시의 한국 남해안의 수온 및 염분 분포)

  • Lee, Moon-Ock;Choi, Jae-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.235-247
    • /
    • 2009
  • In order to elucidate the cause of Cochlodinium polykrikoides blooms in the Korea southern coastal water, we investigated observational data of water temperatures and salinities in summer and winter, obtained from the stoppage of ship by NFRDI (National Fisheries Research and Development Institute) as well as composite images by NOAA from 1995 to 2008. Cochlodinium polykrikoides blooms occurred when water temperature was approximately $25.0{\sim}26.0^{\circ}C$ and salinity was 31.00 psu on average in Narodo neighboring seas. Different thermohaline fronts were observed between the Korea southern coastal water and the open sea water in summer and winter, respectively. That is, in winter four fronts were observed between the Korea southern coastal water with low temperature and low salinity, intermediate water originated from Tsushima Warm Current, Tsushima Warm Current with high temperature and high salinity, and the China coastal water with low temperature and low salinity. In contrast, in summer two fronts were observed between the Korea southern coastal water with low temperature and high salinity, Tsushima Warm Current with high temperature and low salinity, and the China coastal water with high temperature and high salinity. These thermohaline fronts also proved to be formed by two water masses with a different physical property, in terms of T-S diagrams. Consequently, we noticed that C. polykrikoides blooms occurring in Narodo neighboring seas in summer had a close relationship with thermohaline fronts observed between the Korea southern coastal water and Tsushima Warm Current.

  • PDF