• Title/Summary/Keyword: C-terminal deletion

Search Result 68, Processing Time 0.023 seconds

Domain Function and Relevant Enzyme Activity of Cycloinulooligosaccharide Fructanotransferase from Paenibacillus polymyxa (Paenibacillus polymyxa Cycloinulooligosaccharide Fructanotransferase의 효소 활성에 미치는 각 Domain의 역할)

  • You Dong-Ju;Park Jung-Ha;You Kyung-Ok;Nam Soo-Wan;Kim Kwang-Hyeon;Kim Byung-Woo;Kwon Hyun-Ju
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.278-287
    • /
    • 2006
  • Cycloinulooligosaccharide fructanotransferase (CFTase) converts inulin into cycloinulooligosaccharides (cyclofructan, CF) of ${\beta}-(2{\to}1)$-linked D-fructofuranose as well as hydrolysis of cyclofructan. Sequences analysis indicated that CFTase was divided into five distinct regions containing three repeated sequences (R1, R3, and R4) at the N-terminus and C-terminus. Each domain function was investigated by comparison of wild type CFTase enzyme (CFT148) and deletion mutant proteins (CFT108: R1 and R3 deletion; CFT130: R4 deletion; and CFT88: R1, R3, and R4 deletion) of CFTase. The CFT108 mutant had both CFTase and CF hydrolyzing activity as CFT148 did. CFTase activities and CF hydrolysing activities were disappeared in CFT130 and CFT88 mutants. These results indicated that the C-terminal R4 region of P. polymyxa CFTase is necessary for cyclization and hydrolyzing activity.

Deletion Analysis of the Major NF-${\kappa}B$ Activation Domain in Latent Membrane Protein 1 of Epstein-Barr Virus

  • Cho, Shin;Lee, Won-Keun
    • Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.256-262
    • /
    • 1999
  • Latent membrane protein 1 (LMP1) of the Epstein-Barr virus (EBV) is an integral membrane protein with six transmembrane domains, which is essential for EBV-induced B cell transformation. LMP1 functions as a constitutively active tumor necrosis factor receptor (TNFR) like membrane receptor, whose signaling requires recruitment of TNFR-associated factors (TRAFs) and leads to NF-${\kappa}B$ activation. NF-${\kappa}B$ activation by LMP1 is critical for B cell transformation and has been linked to many phenotypic changes associated with EBV-induced B cell transformation. Deletion analysis has identified two NF-${\kappa}B$ activation regions in the carboxy terminal cytoplasmic domains of LMP1, termed CTAR1 (residues 194-232) and CTAR2 (351-386). The membrane proximal C-terminal domain was precisely mapped to a PXQXT motif (residues 204-208) involved in TRAF binding as well as NF-${\kappa}B$ activation. In this study, we dissected the CTAR2 region, which is the major NF-${\kappa}B$ signaling effector of LMP1, to determine a minimal functional sequence. A series of LMP1 mutant constructs systematically deleted for the CTAR2 region were prepared, and NF-${\kappa}B$ activation activity of these mutants were assessed by transiently expressing them in 293 cells and Jurkat T cells. The NF-${\kappa}B$ activation domain of CTAR2 appears to reside in a stretch of 6 amino acids (residues 379-384) at the end of the carboxy terminus.

  • PDF

IKKγ Facilitates the Activation of NF-κB by Hsp90 (Hsp90에 의한 NF-κB의 활성화를 촉진하는 IKKγ의 역할)

  • Lee, Jeong Ah;Kim, Dong Wan
    • Journal of Life Science
    • /
    • v.32 no.3
    • /
    • pp.241-248
    • /
    • 2022
  • NF-κB acts as a critical transcription factor in inflammation and innate immunity, and it is also closely involved in cell survival and tumorigenesis via induction of anti-apoptotic genes. In these processes, NF-κB cooperates with multiple other signaling molecules and pathways, and although many studies have demonstrated that Hsp90 regulates NF-κB activity, the exact mechanism is unclear. In this study, we investigated the relationship between Hsp90 and IKKγ in the regulation of NF-κB using expression plasmids of IKK complex components. Wild-type and deletion mutants of IKKγ were expressed together with Hsp90, and the combined regulatory effect of Hsp90 and IKKγ on NF-κB activation was assayed. The results show that Hsp90 activates NF-κB by promoting the phosphorylation and degradation of IκBα and that activation of NF-κB by NIK and LPS was increased by Hsp90. IKKγ elevated the effect of Hsp90 on NF-κB activation by increasing phosphorylation and degradation of IκBα. The positive regulation on NF-κB by Hsp90 and IKKγ was also proved in analysis with IKKβ-EE, the constitutively active form of IKKβ. In experiments with the deletion mutants of IKKγ, the N-terminal IKKβ binding domain, C-terminal leucine zipper, and zinc finger domains of IKKγ were found not necessary for the positive regulation of NF-κB activity. Additionally, the expression of pro-inflammatory cytokines was synergistically elevated by Hsp90 and IKKγ. These results indicate that inhibiting the interaction between Hsp90 and IKKγ is a possible strategic method for controlling NF-κB and related diseases.

High Yield Production of Cyclofructan by Deletion Mutant Enzyme of Cycloinulooligosaccharide Fructanotransferase (Cycloinulooligosaccharide fructanotransferase의 결손변이효소에 의한 cyclofructan의 고효율 생산)

  • Park Jung-Ha;Kwon Hyun-Ju;Kim Byung-Woo
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • This study investigated the optimal conditions of high yield production of cyclofructan (CF) using recombinant deletion mutant enzyme CFT108 which is constructed by N-terminal deletion from cycloinulooligosaccharide fructanotransferase (CFTase) gene of Penibacillus polymyxa. The production yield was dependent on reaction time, substrate concentration and enzyme concentration. The optimum reaction time for industrial purpose was achieved at 3 hr reaction. The optimal concentrations of substrate and enzyme were found to be $2\%$ inulin and 40 unit/ g inulin, respectively. At optimum condition, 9.5 g/l of maximum yield and $47.5\%$ of conversion efficacy were achieved. For purification of CF produced, the reaction mixture was treated with 1 unit/ml exoinulinase and then added $3\%$ CaO three times with blowing $CO_2$ gas, resulted in $95\%$ purity.

Isolation of N-Acetylmuramoyl-L-Alanine Amidase Gene (amiB) from Vibrio anguillarum and the Effect of amiB Gene Deletion on Stress Responses

  • Ahn Sun-Hee;Kim Dong-Gyun;Jeong Seung-Ha;Hong Gyeong-Eun;Kong In-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1416-1421
    • /
    • 2006
  • We identified a gene encoding the N-acetylmuramoyl L-alanine amidase (amiB) of Vibrio anguillarum, which catalyzes the degradation of peptidoglycan in bacteria. The entire open reading frame (ORF) of the amiB gene was composed of 1,722 nucleotides and 573 amino acids. The deduced amino acid sequence of AmiB showed a modular structure with two main domains; an N-terminal region exhibiting an Ami domain and three highly conserved, continuously repeating LysM domains in the C-terminal portion. An amiB mutant was constructed by homologous recombination to study the biochemical function of the AmiB protein in V. anguillarum. Transmission electron microscopy (TEM) revealed morphological differences, and that the mutant strain formed trimeric and tetrameric unseparated cells, suggesting that this enzyme is involved in the separation of daughter cells after cell division. Furthermore, inactivation of the amiB gene resulted in a marked increase of sensitivity to oxidative stress and organic acids.

Cloning, Expression, and Renaturation Studies of Reteplase

  • Zhao, Youchun;Ge, Wang;Kong, Young;Zhang, Changkai
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.989-992
    • /
    • 2003
  • Recombinant human tissue plasminogen activator deletion mutein (Reteplase) is a clinically promising thrombolytic drug. Reteplase cDNA was subcloned into a bacteria expression system, and the resultant recombinant was biologically characterized. The Reteplase was expressed in Escherichia coli as an inclusion body, and the downstream processes of the Reteplase inclusion body included denaturation, renaturation, and purification. A protein disulfide isomerase (PDI) was used to assist the refolding of Reteplase, and it was found to increase the refolding rate from less than 2% to more than 20%. The refolded Reteplase was purified through two chromatography steps, including lysine-coupled agarose affinity chromatography and then CM-sepharose cation-exchange chomatography. The purity of r-PA was analyzed by Western bolt analysis, and N-terminal amino acid and amino acid composition analyses confirmed the end-product. Reteplase showed higher thrombolytic potency in an animal thrombus model.

Cell Surface Display of Poly(3-hydroxybutyrate) Depolymerase and its Application

  • Lee, Seung Hwan;Lee, Sang Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.244-247
    • /
    • 2020
  • We have expressed extracellular poly(3-hydroxybutyrate) (PHB) depolymerase of Ralstonia pickettii T1 on the Escherichia coli surface using Pseudomonas OprF protein as a fusion partner by C-terminal deletion-fusion strategy. Surface display of depolymerase was confirmed by flow cytometry, immunofluorescence microscopy and whole cell hydrolase activity. For the application, depolymerase was used as an immobilized catalyst of enantioselective hydrolysis reaction for the first time. After 48 h, (R)-methyl mandelate was completely hydrolyzed, and (S)-mandelic acid was produced with over 99% enantiomeric excess. Our findings suggest that surface displayed depolymerase on E. coli can be used as an enantioselective biocatalyst.

Characterization of Novel Salt-Tolerant Esterase Isolated from the Marine Bacterium Alteromonas sp. 39-G1

  • Won, Seok-Jae;Jeong, Han Byeol;Kim, Hyung-Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.216-225
    • /
    • 2020
  • An esterase gene, estA1, was cloned from Alteromonas sp. 39-G1 isolated from the Beaufort Sea. The gene is composed of 1,140 nucleotides and codes for a 41,190 Da protein containing 379 amino acids. As a result of a BLAST search, the protein sequence of esterase EstA1 was found to be identical to Alteromonas sp. esterase (GenBank: PHS53692). As far as we know, no research on this enzyme has yet been conducted. Phylogenetic analysis showed that esterase EstA1 was a member of the bacterial lipolytic enzyme family IV (hormone sensitive lipases). Two deletion mutants (Δ20 and Δ54) of the esterase EstA1 were produced in Escherichia coli BL21 (DE3) cells with part of the N-terminal of the protein removed and His-tag attached to the C-terminal. These enzymes exhibited the highest activity toward p-nitrophenyl (pNP) acetate (C2) and had little or no activity towards pNP-esters with acyl chains longer than C6. Their optimum temperature and pH of the catalytic activity were 45℃ and pH 8.0, respectively. As the NaCl concentration increased, their enzyme activities continued to increase and the highest enzyme activities were measured in 5 M NaCl. These enzymes were found to be stable for up to 8 h in the concentration of 3-5 M NaCl. Moreover, they have been found to be stable for various metal ions, detergents and organic solvents. These salt-tolerant and chemical-resistant properties suggest that the enzyme esterase EstA1 is both academically and industrially useful.

Protein Kinase (PKC)-ε Interacts with the Serotonin Transporter (SERT) C-Terminal Region (Protein kinase (PKC)-ε와 serotonin transporter (SERT)의 C-말단과의 결합)

  • Moon, Il-Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.20 no.10
    • /
    • pp.1451-1457
    • /
    • 2010
  • Serotonin (5-hydroxytryptamine, 5-HT) is an important mediator of cell-cell signaling in neuronal systems. The serotonin transporter (SERT) on the plasma membrane controls the extracellular 5-HT level by reuptake of released 5-HT from the synaptic cleft, but the underlying regulation mechanism is unclear. Here, we used the yeast two-hybrid system to identify the specific binding protein(s) that interacts with the carboxyl (C)-terminal region of SERT and found a specific interaction with protein kinase C-$\varepsilon$ (PKC-$\varepsilon$), a PKC isotype that is characterized as a calcium-independent and phorbol ester/diacylglycerol-sensitive serine/threonine kinase. PKC-$\varepsilon$ bound to the tail region of SERT but not to other members of the $Na^+/Cl^-$ dependent SLC6 gene family in the yeast two-hybrid assay. The C-terminal region of PKC-$\varepsilon$ is essential for interaction with SERT. In addition, these proteins showed specific interactions in the glutathione S-transferase (GST) pull-down assay. PKC-$\varepsilon$ phosphorylated the peptide of the SERT amino (N)-terminus in vitro. These results suggest that the phosphorylation of SERT by PKC-$\varepsilon$ may regulate SERT activity in plasma membrane.

In Vitro N-Glycan Mannosyl-Phosphorylation of a Therapeutic Enzyme by Using Recombinant Mnn14 Produced from Pichia pastoris

  • Kang, Ji-Yeon;Choi, Hong-Yeol;Kim, Dong-Il;Kwon, Ohsuk;Oh, Doo-Byoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.163-170
    • /
    • 2021
  • Enzyme replacement therapy for lysosomal storage diseases usually requires recombinant enzymes containing mannose-6-phosphate (M6P) glycans for cellular uptake and lysosomal targeting. For the first time, a strategy is established here for the in vitro mannosyl-phosphorylation of high-mannose type N-glycans that utilizes a recombinant Mnn14 protein derived from Saccharomyces cerevisiae. Among a series of N-terminal- or C-terminal-deleted recombinant Mnn14 proteins expressed in Pichia pastoris, rMnn1477-935 with deletion of N-terminal 76 amino acids spanning the transmembrane domain (46 amino acids) and part of the stem region (30 amino acids), showed the highest level of mannosyl-phosphorylation activity. The optimum reaction conditions for rMnn1477-935 were determined through enzyme assays with a high-mannose type N-glycan (Man8GlcNAc2) as a substrate. In addition, rMnn1477-935 was shown to mannosyl-phosphorylate high-mannose type N-glycans (Man7-9GlcNAc2) on recombinant human lysosomal alpha-glucosidase (rhGAA) with remarkably high efficiency. Moreover, the majority of the resulting mannosyl-phosphorylated glycans were bis-form which can be converted to bis-phosphorylated M6P glycans having a superior lysosomal targeting capability. An in vitro N-glycan mannosyl-phosphorylation reaction using rMnn1477-935 will provide a flexible and straightforward method to increase the M6P glycan content for the generation of "Biobetter" therapeutic enzymes.