• Title/Summary/Keyword: C-scan

Search Result 774, Processing Time 0.029 seconds

Colorization of C-Scan Ultrasonic Image and Automatic Evaluation Algorithm of Welding Quality (C-Scan 초음파 영상 컬러화 및 용접 품질 자동 평가 시스템)

  • Kim, Tae-Kyu;Kwon, Seong-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.11
    • /
    • pp.1271-1278
    • /
    • 2018
  • The NDT using ultrasonic is largely divided into A-Scan and C-Scan methods. Since A-Scan method is subject to subjective judgement by trained personnel, C-Scan method has been introduced, which presents the weld area in two dimensions by placing the transducers two dimensionally used in the A-Scan method. Therefore, it is necessary to develop equipment that can provide weld quality without the help of a welding expert and the presentation of effective C-Scan images. Thus, in this paper, the algorithms that express a low resolution 2-dimensional gray image formed by C-Scan method as a high-resolution color C-Scan image and automatically determine the weld quality from the generated C-Scan color image. The high resolution color C-Scan images proposed in this paper allow the exact shape of the weld point to be expressed, and an objective algorithm to use this image to automatically determine weld quality.

Low Power Test for SoC(System-On-Chip)

  • Jung, Jun-Mo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.892-895
    • /
    • 2011
  • Power consumption during testing System-On-Chip (SOC) are becoming increasingly important as the IP core increases in SOC. We present a new algorithm to reduce the scan-in power using the modified scan latch reordering and clock gating. We apply scan latch reordering technique for minimizing the hamming distance in scan vectors. Also, during scan latch reordering, the don't care inputs in scan vectors are assigned for low power. Also, we apply the clock gated scan cells. Experimental results for ISCAS 89 benchmark circuits show that reduced low power scan testing can be achieved in all cases.

  • PDF

Physical-Aware Approaches for Speeding Up Scan Shift Operations in SoCs

  • Lee, Taehee;Chang, Ik Joon;Lee, Chilgee;Yang, Joon-Sung
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.479-486
    • /
    • 2016
  • System-on-chip (SoC) designs have a number of flip-flops; the more flip-flops an SoC has, the longer the associated scan test application time will be. A scan shift operation accounts for a significant portion of a scan test application time. This paper presents physical-aware approaches for speeding up scan shift operations in SoCs. To improve the speed of a scan shift operation, we propose a layout-aware flip-flop insertion and scan shift operation-aware physical implementation procedure. The proposed combined method of insertion and procedure effectively improves the speed of a scan shift operation. Static timing analyses of state-of-the-art SoC designs show that the proposed approaches help increase the speeds of scan shift operations by up to 4.1 times that reached under a conventional method. The faster scan shift operation speeds help to shorten scan test application times, thus reducing test costs.

Determination of Optimal Scan Time for the Measurement of Downstream Metabolites in Hyperpolarized 13C MRSI

  • Lee, Hansol;Lee, Joonsung;Joe, Eunhae;Yang, Seungwook;Choi, Young-suk;Wang, Eunkyung;Song, Ho-Taek;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.4
    • /
    • pp.212-217
    • /
    • 2015
  • Purpose: For a single time-point hyperpolarized $^{13}C$ magnetic resonance spectroscopy imaging (MRSI) of animal models, scan-time window after injecting substrates is critical in terms of signal-to-noise ratio (SNR) of downstream metabolites. Pre-scans of time-resolved magnetic resonance spectroscopy (MRS) can be performed to determine the scan-time window. In this study, based on two-site exchange model, protocol-specific simulation approaches were developed for $^{13}C$ MRSI and the optimal scan-time window was determined to maximize the SNR of downstream metabolites. Materials and Methods: The arterial input function and conversion rate constant from injected substrates (pyruvate) to downstream metabolite (lactate) were precalibrated, based on pre-scans of time-resolved MRS. MRSI was simulated using two-site exchange model with considerations of scan parameters of MRSI. Optimal scan-time window for mapping lactate was chosen from simulated lactate intensity maps. The performance was validated by multiple in vivo experiments of BALB/C nude mice with MDA-MB-231 breast tumor cells. As a comparison, MRSI were performed with other scan-time windows simply chosen from the lactate signal intensities of pre-scan time-resolved MRS. Results: The optimal scan timing for our animal models was determined by simulation, and was found to be 15 s after injection of the pyruvate. Compared to the simple approach, we observed that the lactate peak signal to noise ratio (PSNR) was increased by 230%. Conclusion: Optimal scan timing to measure downstream metabolites using hyperpolarized $^{13}C$ MRSI can be determined by the proposed protocol-specific simulation approaches.

Enhancement of Ultrasonic C-scan Images for Inspection of Multi-layered Composite Panels (다층 후판 복합재 패널의 결함 검출을 위한 C-Scan 이미지 보정기법)

  • Cho Hyun;Song Sung-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.264-267
    • /
    • 2006
  • One of the serious problems that make the flaw identification in a multi-layered thick composite panel more difficult is the interferenceeffect of the upper layer. To take care of such a problem, here we propose an image enhancement approach that can get rid of such an interference effect to ultrasonic C-scan images by a normalization of the acquired signals by a reference signals, and demonstrate its performance in the experiments. Specifically, three specimens with artificial flaws are prepared and ultrasonic C-scan images are acquired experimentally to eliminate the undesired interference effect. Cleat successes are observed in the present study demonstrating the high potential of the proposed algorithm as a practical image enhancement tool in many practical situations.

  • PDF

Noise Reduction and C-Scan Image Shaping of Ultrasonic Signal for Welding Quality Inspection (용접 품질 검사를 위한 초음파 신호의 노이즈 제거 및 C-Scan 영상 형상화)

  • Kim, Tae-Kyu;SEO, JONGDOCK;Lee, Dong-Hyung;Kang, Eon-uck;Kwon, Seong-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.10
    • /
    • pp.1662-1670
    • /
    • 2017
  • A-Scan NDT equipment is widely used in the industrial field because it is inexpensive and easy to carry but it is necessary to have a skilled inspection specialist who is trained to analyze the waveform of ultrasonic signal. Since the welding quality is judged subjectively by the specialist, there is a problem in the reliability of the quality. In the C-Scan NDT which overcomes the shortcomings of the A-Scan, welding part can be represented in the form of two dimensional image by combining one dimensional ultrasonic waveform so that the quality of welding can be grasped without the help of specialist. In order to develop C-Scan NDT, it is necessary to develop an array type two dimensional transducer and an algorithm to composing image by combining ultrasonic signals generated from a two dimensional transducer. In addition, the noise component must be minimized in the ultrasonic signal in order to display the quality of welding in the form of images. Therefore we propose a method to remove noise component from the ultrasonic wave and construct a two dimensional ultrasonic image.

Efficient Test Wrapper Design in SoC (SoC 내의 효율적인 Test Wrapper 설계)

  • Jung, Jun-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1191-1195
    • /
    • 2009
  • We present the efficient test wrapper design methodology considering the layout distance of scan chain. To test the scan chains in SoC, the scan chains must be assigned to external TAM(Test Access Mechanism) lines. The scan chains in IP were placed and routed without any timing violation at normal mode. However, in test mode, the scan chains have the additional layout distance after TAM line assignment, which can cause the timing violation of flip-flops in scan chains. This paper proposes a new test wrapper design considering layout distance of scan chains with timing violation free.

Evaluation of TOF MR Angiography and Imaging for the Half Scan Factor of Cerebral Artery (유속신호증강효과의 자기공명혈관조영술을 이용한 뇌혈관검사에서 Half Scan Factor 적용한 영상 평가)

  • Choi, Young Jae;Kweon, Dae Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.3
    • /
    • pp.92-98
    • /
    • 2016
  • To aim of this study was to assess the full scan and half scan of imaging with half scan factor. Patients without a cerebral vascular disease (n = 30) and were subject to the full scan half scan, and set a region of interest in the cerebral artery from the three regions (C1, C2, C3) in the range of 7 to 8 mm. MIP (maximum intensity projection) to reconstruct the images in signal strength SNR (signal to noise ration), PSNR (peak signal noise to ratio), RMSE (root mean square error), MAE (mean absolute error) and calculated by paired t-test for use by statistics were analyzed. Scan time was half scan (4 minutes 53 seconds), the full scan (6 minutes 04 seconds). The mean measurement range (7.21 mm) of all the ROI in the brain blood vessel, was the SNR of the first C1 is completely scanned (58.66 dB), half-scan (62.10 dB), a positive correlation ($r^2=0.503$), for the second C2 SNR is completely scanned (70.30 dB), half-scan (74.67 dB) the amount of correlation ($r^2=0.575$), third C3 of a complete scan SNR (70.33 dB), half scan SNR (74.64 dB) in the amount of correlation between the It was analyzed with ($r^2=0.523$). Comparative full scan with half of SNR ($4.75{\pm}0.26dB$), PSNR ($21.87{\pm}0.28dB$), RMSE ($48.88{\pm}1.61$), was calculated as MAE ($25.56{\pm}2.2$). SNR is also applied to examine the half-scans are not many differences in the quality of the two scan methods were not statistically significant in the scan (p-value > .05) image takes less time than a full scan was used.

Filtering in composite materials C-scan image (복합재료의 C-scan영상에서의 오류 검출에 관한 연구)

  • Lee, Hyung-Jin;Shin, Deok-Ha;Jee, Jeong-Hwan;Baek, Joong-Hwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.961-964
    • /
    • 2009
  • 본 논문은 복합재료로부터 얻어진 C-scan영상에서의 효과적인 잡음 제거에 관한 연구 내용이다. 복합재료에서의 결함을 검출하는 것은 여러 실용, 응용분야에서 관심을 가지는 주제이다. 초음파 영상은 대부분이 육안으로 정확한 판단을 하기에는 어렵고, 잡음의 영향으로 정확한 결함에 대한 영역을 파악하는데 문제를 발생시킨다. 결함의 정확한 판별을 위해서는 물체의 영역을 정확히 판별하는 것이 중요하지만 영상에서 잡음에 대한 문제를 우선 해결해야 한다. C-scan 영상에서의 배경과 결함의 경계영역을 보존하면서 잡음 제거를 위해 웨이브렛(Wavelet) 변환을 이용하는 방법을 제안한다. 특히, C-scan 영상에서 Filtering을 적용하는데에 있어 드비시(Daubechies) Wavelet Filtering이 결함영역에 대한 좀 더 명확한 분석이 가능하게 함을 얘기하고자 한다.

  • PDF

Low Power Test for SoC(System-On-Chip)

  • Jung, Jun-Mo
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.729-732
    • /
    • 2011
  • Power consumption during testing System-On-Chip (SOC) is becoming increasingly important as the IP core increases in SOC. We present a new algorithm to reduce the scan-in power using the modified scan latch reordering and clock gating. We apply scan latch reordering technique for minimizing the hamming distance in scan vectors. Also, during scan latch reordering, the don't care inputs in scan vectors are assigned for low power. Also, we apply the clock gated scan cells. Experimental results for ISCAS 89 benchmark circuits show that reduced low power scan testing can be achieved in all cases.