• Title/Summary/Keyword: C-nucleoside

Search Result 84, Processing Time 0.026 seconds

Imaging of Tumor Proliferation Using Iodine-131-Iodomethyluridine (Iodine-131-Iodomethyluridine을 이용한 종양세포증식의 영상화에 관한 실험적 연구)

  • Min Kyung-Yoon;Kim, Chang-Guhn;Kim, Hyun-Jeong;Lim, Hyung-Guhn;Rho, Ji-Young;Juhng Seon-Kwan;Won Jong-Jin;Yang, David J.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.3
    • /
    • pp.344-350
    • /
    • 1996
  • Purpose : Noninvasive imaging of tumor cell proliferation could be helpful in the evaluation of tumor growth potential and could provide an early assessment of treatment response. Radiolabeled thymidine, uridine and adenosine have been used to evaluate tumor cell proliferation. These nucleoside analogs are incorporated into DNA during proliferation. Iodine-131-Iodomethyluridine, an analog of Iodine-131-Iododeoxyuridine, is also involved in DNA/RNA synthesis. The purpose of this study was to develop Iodine-131-Iodomethylurdine and image tumor proliferation using Iodine-131-Iodomethyluridine. Materials and Methods : Radiosynthesis of Iodine-131-5-Iodo-2'-O-methyluridine (Iodine-131-Iodomethyluridine) was prepared from 10 mg of 2'-O-methyluridine(Sigma chemical Co., St. Louis, Missouri) and 2.1 mCi(SP. 10Ci/mg) of Iodine-131-labeled sodium iodide in $100{\mu}l$ of water using iodogen reaction. Female Fischer 344 rats were inoculated in the thigh area with breast tumor cells(13765 NF, $10^5$ cells/rat S.C.). After 14 days, the Iodine-131-Iodomethyluridine $10{\mu}Ci$ was injected to three groups of rats(3/group). The percent of injected dose per gram of tissue weight was determined at 0.5-hours, 2-hours, 4-hours, and 24-hours respectively. Tumor bearing rats after receiving Iodine-131-Iodomethyluridine($50{\mu}Ci$ IV) were euthanized at 2 hours after injection. Autoradiography was done using freeze-dried $50{\mu}m$ coronal section. After injection of Iodine-131- Iodomethyluridine ($10{\mu}Ci$/rat, IV) in three breast tumor-bearing rats, planar scintigraphy was taken at 45 minutes, 90 minutes and 24 hours. Results : Iodine-131-Iodomethyluridine was conveniently synthesized using iodogen reaction. The biodistribution showed fast blood clearance and the tumor-to-tissue uptake ratios showed that optimal imaging time was at 2 hours postinjection. Autoradiogram and planar scintigram indicated that tumor could be well visualized. Conclusion : The findings suggest that Iodine-131-Iodomethyluridine, a new radio-iodinated nucleoside, has potential use for evaluation of active regions of tumor growth.

  • PDF

Potent Anticancer Effects of Lentivirus Encoding a Drosophila Melanogaster Deoxyribonucleoside Kinase Mutant Combined with Brivudine

  • Zhang, Nian-Qu;Zhao, Lei;Ma, Shuai;Gu, Ming;Zheng, Xin-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2121-2127
    • /
    • 2012
  • Objective: Deoxyribonucleoside kinase of Drosophila melanogaster (Dm-dNK) mutants have been reported to exert suicide gene effects in combined gene/chemotherapy of cancer. Here, we aimed to further evaluate the capacity of the mutanted enzyme and its potential for inhibiting cancer cell growth. Methods: We altered the sequence of the last 10 amino acids of Dm-dNK to perform site-directed mutagenesis and constructed active site mutanted Dm-dNK (Dm-dNKmut), RT-PCR and western bloting studies were used to reveal the expression of lentivirus mediated Dm-dNKmut in a breast cancer cell line (Bcap37), a gastric cancer cell line (SGC7901) and a colorectal cancer cell line (CCL187). [3H]-labeled substrates were used for enzyme activity assays, cell cytotoxicity was assessed by MTT assays, cell proliferation using a hemocytometer and apoptosis induction by thenannexin-V-FITC labeled FACS method. In vivo, an animal study was set out in which BALB/C nude mice bearing tumors were treated with lentivirus mediated expression of Dm-dNKmut with the pyrimidine nucleoside analog brivudine (BVDU, (E)-5-(2-bromovinyl)-(2-deoxyuridine). Results: The Dm-dNKmut could be stably expressed in the cancer cell lines and retained its enzymatic activity. Moreover, the cells expressing Dm-dNKmut exhibited increased sensitivity in combination with BVDU, with induction of apoptosis in vitro and in vivo. Conclusion: These findings underlined the importance of BVDU phosphorylated by Dm-dNKmut in transduced cancer cells and the potential role of Dm-dNKmut as a suicide gene, thus providing the basis for future intensive research for cancer therapy.

Genetic Screening for Plant Cell Death Suppressors and Their Functional Analysis in Plants

  • Yun, Dae-Jin
    • Proceedings of the Korean Society of Life Science Conference
    • /
    • 2005.04a
    • /
    • pp.23-36
    • /
    • 2005
  • Bax, a mammalian pro-apoptotic member of the Bcl-2 family, induces cell death when expressed In yeast. To investigate whether .Bax expression can induce cell death in plant, we produced transgenic Arabidopsis plants that contained murine Bax cDNA under control of a glucocorticoid-inducible promoter. Transgenic plants treated with dexamethasone, a strong synthetic glucocorticoid, induced Bax accumulation and cell death, suggesting that some elements of cell death mechanism by Bax may be conserved among various orgarusms. Therefore, we developed novel yeast genetic system, and cloned several Plant Bax Inhibitors (PBIs). Here, we report the function of two PBIs In detail. PBIl is ascorbate peroxidase (sAPX). Fluorescence method of dihydrorhodamine123 oxidation revealed that expression of Bax in yeast cells generated reactive oxygen species (ROS), and which was greatly reduced by co-expression with sAPX. These results suggest that sAPX inhibits the generation of ROS by Bax, which in turn suppresses Bax-induced cell death in yeast. PBI2 encodes nucleoside diphosphate kinase (NDPK). ROS stress strongly induces the expression of the NDPK2 gene in Arabidopsis thaliana (AtNDPK2). Transgenic plants overexpressing AtNDPK2 have lower lovels of ROS than wildtype plants. Mutants lacking AtNDPK2 had higher levels of ROS than wildtype. H$_{2O2}$ treatment induced the phosphorylation of two endogenous proteins whose molecular weights suggested they are AtMPK3 and AtMPK6. In the absence of H2O2 treatment, phosphorylation of these proteins was slightly elevated in plants overexpressing AtNDPK2 but markedly decreased In the AtNDPK2 deletion mutant. Yeast two-hybrid and in vitro protein pull-down assays revealed that AtNDPK2 specifically interacts with AtMPK3 and AtMPK6. Furthermore, AtNDPK2 also enhances the MBP phosphorylation activity of AtMPK3 i'n vitro. Finally, constitutive overexpression of AtNDPK2 in Arabidopsis plants conferred an enhanced tolerance to multiple environmental stresses that elicit ROS accumulation In situ. Thus, AtNDPK2 appears to play a novel regulatory role in H2O2-mediated MAPK signaling in plants.

  • PDF

Synthesis and in vitro cytotoxicity of a homologous series of 5-halosubstituted $1,3-Bis(\omega-cyanoalkyl)$uracil analogues

  • Kim, Jack-C.;Dong, Eun-Soo;Park, Jin-Il;Kim, Young-Hyeun;Choi, Soon-Kyu
    • Archives of Pharmacal Research
    • /
    • v.19 no.1
    • /
    • pp.62-65
    • /
    • 1996
  • A homologous series of twenty, hitherto unreported, analogues of 5-halosubstituted $1, 3-Bis(\omega-cyanoalkyl)uracil$acyclic nucleosides were synthesized by the series of alkylation reactions of 5-halouracils with the corresponding chloroacetonitrile, chloropropionitrile, chlorobutyronitrile and 5-chlorovaleronitrile $(Cl-(C_ 2)_n-CN: n=l, 2, 3, 4)\; in\; anhydrous\; DMSO\; (or DMF)/K_2CO_3(or NaH)\; under\; 75^{\circ}C$ temperature. Antitumor activities for the synthesized compounds were determined against three cell lines (FM-3A cell, P-388 cell and U-938 cell lines). The compounds that exhibited moderate activity to significant activity, included la-b, 2a-b, 3a-c, and 4a, whose compounds were active against P-388, FM-3A and U-937 cell lines with the compounds la, lb, and 2a, showing significant antitumor activity (inhibitory concentrations $(IC_{50})$ ranged from 2.2 to $7.0\mug/ml$). Their strucrure-activity relationship did not show any activity differences in their effective chain length (methyl, ethyl, propyl, butyl) in 1, 3-bis(.omega.-cyanoalkyl) uracils.

  • PDF

Novel Synthesis of Sulfated Chitosan Derivatives and its Anti-HIV-1 Activity (황산화 키토산 유도체의 합성과 항에이즈활성)

  • Han Sang-Mun
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.1 s.59
    • /
    • pp.21-34
    • /
    • 2006
  • To investigate anti-HIV-1 activity of water soluble chitosans, sulfated chitosan derivatives were prepared in mild condition. Various sulfated chitosan derivatives (N-3,6-O-S-chitosan, N-desulfated 3,6-O-S-chitosan, 3,6-O-S-chitin, and 3,6-O-sulfated-N-(o-carboxybenzoyl) chitosan) were synthesized with sulfurtrioxidepyridene complex in pyridine solvent. Characterization of the sulfated chitosan derivatives was carried out by $^{13}C$ NMR and IR spectroscopies. To observe ionic reaction properties, pKas of the sulfated chitosan derivatives and chitosan of low molecular weight were estimated by potentiometric titration. The sulfated chitosan derivatives had high water solubility, pKas (pKa : 7.7) of N-3,6-O-S-chitosan and N-desulfated 3,6-O-S-chitosan were increased than pKa of water insoluble chitosan (pKa : 6.2), These results suggest the participation of electrostatic interaction of amino and sulfate groups on the sulfated chitosans. Anti-HIV-1 drugs, such as AZT, ddC, and ddI for anti-HIV activity had higher selective index compared with SCB-chitosan but N-3,6-O-S-chitosan has shown higher selective index compared with ddC and ddI as HIV drugs.. These results suggest that sulfated chitosan derivatives were expected as an anti-HIV drug with differential driving force mechanism against some nucleoside analogs drug in the future.

Subcellular Localization of Capsaicin-Hydrolyzing Enzyme in Rat Hepatocytes (Capsaicin 가수분해효소의 흰쥐 간세포내 소재확인)

  • Park, Young-Ho;Lee, Sang-Sup
    • YAKHAK HOEJI
    • /
    • v.38 no.1
    • /
    • pp.12-19
    • /
    • 1994
  • Capsaicin(8-methyl-N-vanillyl-6-nonenamide) is the principal pungent component of Capsicum fruits. This work is directed to the capsaicin-hydrolyzing enzyme playing a key role in the rate limiting and critical step of capsaicin metabolism. In order to get precise information on the enzyme's subcellular location, rat liver homogenate was divided into six subcellular fractions by differential centrifugation technique: crude nuclear pellet, PNS(post nuclear supernatant) fraction, lysosomal pellet, cytosol, Tris wash fraction, micrisomes. Capsaicin-hydrolysing enzyme activity was analysed by high performance liquid chromatography(HPLC). This enzyme was found at the highest specific activity in the microsomal fraction and co-distributed with marker enzymes of the endoplasmic reticulum, NADPH-cytochrome c reductase and nucleoside diphosphatase. This is compatible with the result of ninhydrin color reaction of vanillylamine, primary metabolite of capsaicin hydrolysis, on thin layer chromatography(TLC). This enzyme is most active at pH $8.0{\sim}9.0$. Definite subcellular location of this enzyme will make it easy to proceed with further study.

  • PDF

Ischemic Preconditioning Ameliorates Hepatic Injury from Cold Ischemia/Reperfusion

  • PARK Sang-Won;LEE Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • v.13 no.3
    • /
    • pp.127-132
    • /
    • 2005
  • We investigated whether ischemic preconditioning (IPC) protects liver against cold ischemic injury using isolated perfused rat liver. Rat livers were preconditioned by 5 minutes of ischemia and 5 minutes of reperfusion and preserved for 30 hours at $4^{\circ}C$ in University of Wisconsin solution. Livers were then reperfused for 120 minutes. Oxygen uptake and bile flow in ischemic livers markedly decreased during reperfusion. These decreases were prevented by IPC. Portal pressure was elevated in cold ischemic and reperfused livers and this elevation was prevented by IPC. Lactate dehydrogenase and purine nucleoside phosphorylase activities markedly increased during reperfusion. These increases were prevented by IPC. The ratio of reduced glutathione to glutathione disulfide was lower in ischemic livers. This decrease was prevented by IPe. Our findings suggest that IPC protects the liver against the deleterious effect of cold ischemia/reperfusion, and this protection is associated with the reduced oxidative stress.

Isolation and Structure Determination of an Imidazo-pyrimidine, 5-Chlorocavernicolin, Maleimide oximes and Nucleosides from a Marine Sponge Extract

  • Kulkarni, Roshan R.;Kim, Jang Hoon;Kim, Young Ho;Oh, Sangtaek;Na, MinKyun
    • Natural Product Sciences
    • /
    • v.21 no.1
    • /
    • pp.25-29
    • /
    • 2015
  • In a continuation of our studies to discover bioactive secondary metabolites from marine sources, we further investigated samples from a tryptamine and phenyl-alkane producing sponge, which resulted in the isolation of four uncommon small molecules and five nucleosides. Their structures were determined to be 7,8-dihydroimidazo[1,5-c]pyrimidin-5(6H)-one (1), 5-chlorocavernicolin (2), maleimide-5-oxime (3), 3-methylmaleimide-5-oxime (4), uridine (5), 2'-deoxyuridine (6), thymidine (7), adenine (8), and adenosine (9) by spectroscopic analyses. The isolated compounds were evaluated for inhibitory activity against soluble epoxide hydrolase (sEH) as well as the Wnt/${\beta}$-catenine signaling pathway.

Synthesis and Antiviral Evaluation of Novel Methyl Branched Cyclopropyl Phosphonic Acid Nucleosides

  • Kim, Jin-Woo;Ko, Ok-Hyun;Hong, Joon-Hee
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.745-749
    • /
    • 2005
  • A simple synthetic route for the synthesis of novel methyl branched cyclopropyl phosphonic acid nucleosides is described. The characteristic cyclopropyl moiety 8 was constructed by employing Simmons-Smith reaction as a key step. The condensation of mesylate 11 with natural nucleosidic bases (A,C,T,U) under standard nucleophilic substitution conditions ($K_2CO_3$, 18-Crown-6, DMF) and after subsequent hydrolysis resulted in the formation of target nucleosides, 16, 17, 18, and 19. In addition, the antiviral evaluations of the synthesized nucleotides against various viruses were also performed.

Effect of $1-{\beta}-D-Arabinofuranosylcytosine$ on the Cytoplasmic Organelles of the Hepatocytes in Albino Mice ($1-{\beta}-D-Arabinofuranosylcytosine$이 Mouse의 간세포소기관(肝細胞小器官)에 미치는 영향(影響))

  • Kim, S.Y.;Lee, K.S.
    • Applied Microscopy
    • /
    • v.13 no.1
    • /
    • pp.13-30
    • /
    • 1983
  • [ $1-{\beta}-D-Arabinofuranosylcytosine$ ](ara-C), which is a pyrimidine nucleoside analog is cytotonic to mammalian cells in culture and is active in vitro and in vivo against a variety of DNA viruses. The precise mechanism of action of ara-C has not been determined, although ara-C is thought to act as an antimetabolite, interfering with the synthesis of deoxyribonucleic acid(DNA). Cytosine arabinoside originally seemed to act principally by inhibiting the conversion of cytidine to deoxytidine, thus inhibiting DNA synthesis. But recent data suggest that effects upon DNA polymerase and effects via incorporation into DNA and RNA may well be of equal importance. The author have demonstrated the effect of cytosine arabinoside on the hepatocytes of albino mice treated with ara-C, observing changes in the cytoplasmic organelles of the hepatocytes. A total of 120 healthy male albino mice were divided into the control and ara-C treated groups. The animals of the ara-C group were given 10mg. per kg of body weight of mouse ara-C in physiological saline solution and the animals of control group were given physiological saline solution, intraperitoneally. After an administration of ara-C or physiological saline solution, the animal were killed at. interval of 6, 12, and 24 hours. The specimens, which were obtained from the left anterier lobe of the liver, were stained with uranyl acetate and lead citrate and observed with JEM 100B electron microscope. The results were obtained as follow: A pronounced dilatation, sacculation and fragmentation of the cisterane of rough endoplasmic reticulum with dissociation of membrane bound-ribosomes, disaggregation of free ribosomes in the cytoplasm, proliferation of the smooth endoplasmic reticulum associated with depletion of glycogen paracles, atrophies of Golgi complex, production of numerous lipid droplets, and formation of antophagic vacuoles, multivesicular bodies and residual bodies are recognized in the hepatocytes of ara-C treated mice. Consequently it is suggested that cytosine arabinoside would induce a changes of the cytoplasmic organelles of the hepatocytes in albino mice.

  • PDF