• Title/Summary/Keyword: C-mean Clustering

Search Result 85, Processing Time 0.028 seconds

New Soil Classification System Using Cone Penetration Test (콘관입시험결과를 이용한 새로운 흙분류 방법의 개발)

  • Kim, Chan-Hong;Im, Jong-Chul;Kim, Young-Sang;Joo, No-Ah
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.57-70
    • /
    • 2008
  • The advantage of piezocone penetration test is a guarantee of continuous data, which is a source of reliable interpretation of target soil layer. Many researches have been carried out f3r several decades and several classification charts have been developed to classify in-situ soil from the cone penetration test result. Since most present classification charts or methods were developed based on the data which were compiled over the world except Korea, they should be verified to be feasible for Korean soil. Furthermore, sometimes their charts provide different soil classification results according to the different input parameters. However, unfortunately, revision of those charts is quite difficult or almost impossible. In this research a new soil classification model is proposed by using fuzzy C-mean clustering and neuro-fuzzy theory based on the 5371 CPT results and soil logging results compiled from 17 local sites around Korea. Proposed neuro-fuzzy soil classification model was verified by comparing the classification results f3r new data, which were not used during learning process of neuro-fuzzy model, with real soil log. Efficiency of proposed neuro-fuzzy model was compared with other soft computing classification models and Robertson method for new data.

Classification of Music Data using Fuzzy c-Means with Divergence Kernel (분산커널 기반의 퍼지 c-평균을 이용한 음악 데이터의 장르 분류)

  • Park, Dong-Chul
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.3
    • /
    • pp.1-7
    • /
    • 2009
  • An approach for the classification of music genres using a Fuzzy c-Means(FcM) with divergence-based kernel is proposed and presented in this paper. The proposed model utilizes the mean and covariance information of feature vectors extracted from music data and modelled by Gaussian Probability Density Function (GPDF). Furthermore, since the classifier utilizes a kernel method that can convert a complicated nonlinear classification boundary to a simpler linear one, he classifier can improve its classification accuracy over conventional algorithms. Experiments and results on collected music data sets demonstrate hat the proposed classification scheme outperforms conventional algorithms including FcM and SOM 17.73%-21.84% on average in terms of classification accuracy.

3D Face Recognition using Wavelet Transform Based on Fuzzy Clustering Algorithm (펴지 군집화 알고리즘 기반의 웨이블릿 변환을 이용한 3차원 얼굴 인식)

  • Lee, Yeung-Hak
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1501-1514
    • /
    • 2008
  • The face shape extracted by the depth values has different appearance as the most important facial information. The face images decomposed into frequency subband are signified personal features in detail. In this paper, we develop a method for recognizing the range face images by multiple frequency domains for each depth image using the modified fuzzy c-mean algorithm. For the proposed approach, the first step tries to find the nose tip that has a protrusion shape on the face from the extracted face area. And the second step takes into consideration of the orientated frontal posture to normalize. Multiple contour line areas which have a different shape for each person are extracted by the depth threshold values from the reference point, nose tip. And then, the frequency component extracted from the wavelet subband can be adopted as feature information for the authentication problems. The third step of approach concerns the application of eigenface to reduce the dimension. And the linear discriminant analysis (LDA) method to improve the classification ability between the similar features is adapted. In the last step, the individual classifiers using the modified fuzzy c-mean method based on the K-NN to initialize the membership degree is explained for extracted coefficient at each resolution level. In the experimental results, using the depth threshold value 60 (DT60) showed the highest recognition rate among the extracted regions, and the proposed classification method achieved 98.3% recognition rate, incase of fuzzy cluster.

  • PDF

Analyzing the Co-occurrence of Endangered Brackish-Water Snails with Other Species in Ecosystems Using Association Rule Learning and Clustering Analysis (연관 규칙 학습과 군집분석을 활용한 멸종위기 기수갈고둥과 생태계 내 종 간 연관성 분석)

  • Sung-Ho Lim;Yuno Do
    • Korean Journal of Ecology and Environment
    • /
    • v.57 no.2
    • /
    • pp.83-91
    • /
    • 2024
  • This study utilizes association rule learning and clustering analysis to explore the co-occurrence and relationships within ecosystems, focusing on the endangered brackish-water snail Clithon retropictum, classified as Class II endangered wildlife in Korea. The goal is to analyze co-occurrence patterns between brackish-water snails and other species to better understand their roles within the ecosystem. By examining co-occurrence patterns and relationships among species in large datasets, association rule learning aids in identifying significant relationships. Meanwhile, K-means and hierarchical clustering analyses are employed to assess ecological similarities and differences among species, facilitating their classification based on ecological characteristics. The findings reveal a significant level of relationship and co-occurrence between brackish-water snails and other species. This research underscores the importance of understanding these relationships for the conservation of endangered species like C. retropictum and for developing effective ecosystem management strategies. By emphasizing the role of a data-driven approach, this study contributes to advancing our knowledge on biodiversity conservation and ecosystem health, proposing new directions for future research in ecosystem management and conservation strategies.

Design of a Re-adhesion Controller using Fuzzy Logic with Estimated Adhesion Force Coefficient for Wheeled Robot (점착력 계수 추정을 이용한 이동 로봇의 퍼지 재점착 제어기 설계)

  • Kwon, Sun-Ku;Huh, Uk-Youl;Kim, Jin-Hwhan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.620-622
    • /
    • 2004
  • Mobility of an indoor wheeled robot is affected by adhesion force that is related to various floor conditions. When the adhesion force between driving wheels and the floor decreases suddenly, the robot has a slip state. In order to overcome this slip problem, optimal slip velocity must be decided for stable movement of wheeled robot. First of all, this paper shows that conventional PI control can not be applied to a wheeled robot of the light weigh. Secondly, reposed fuzzy logic applied by the Takagi-Sugeno model for the configuration of fuzzy sets. For the design of Takaki-Sugeno model and fuzzy rule, proposed algorithm uses FCM(Fuzzy c-mean clustering method) algorithm. In additionally, this algorithm controls recovered driving torque for the restrain the re-slip. The proposed fuzzy logic controller(FLC) is pretty useful with prevention of the slip phenomena through that compare fuzzy with PI control for the controller performance in the re-adhesion control strategy. These procedures are implemented using a Pioneer 2-DXE wheeled robot parameter.

  • PDF

Adaptive Clustering Algorithm for Recycling Cell Formation: An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products me classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem far disposal products. In this paper, a heuristic approach fuzzy ART neural network is suggested. The modified fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its ai is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF

Design of Meteorological Radar Echo Classifier Based on RBFNN Using Radial Velocity (시선속도를 고려한 RBFNN 기반 기상레이더 에코 분류기의 설계)

  • Bae, Jong-Soo;Song, Chan-Seok;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.242-247
    • /
    • 2015
  • In this study, we propose the design of Radial Basis Function Neural Network(RBFNN) classifier in order to classify between precipitation and non-precipitation echo. The characteristics of meteorological radar data is analyzed for classifying precipitation and non-precipitation echo. Input variables is selected as DZ, SDZ, VGZ, SPN, DZ_FR, VR by performing pre-processing of UF data based on the characteristics analysis and these are composed of training and test data. Finally, QC data being used in Korea Meteorological Administration is applied to compare with the performance results of proposed classifier.

Adaptive Clustering Algorithm for Recycling Cell Formation An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem for disposal products. In this paper, a heuristic approach for fuzzy ART neural network is suggested. The modified Fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its aim is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF

Genetic Diversity of Goats from Korea and China Using Microsatellite Analysis

  • Kim, K.S.;Yeo, J.S.;Lee, J.W.;Kim, J.W.;Choi, C.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.4
    • /
    • pp.461-465
    • /
    • 2002
  • Nine microsatellite loci were analyzed in 84 random individuals to characterize the genetic variability of three domestic goat breeds found in Korea and China: Korean goat, Chinese goat and Saanen. Allele diversity, heterozygosity, polymorphism information content, F-statistics, indirect estimates of gene flow (Nm) and Nei's standard distances were calculated. Based on the expected mean heterozygosity, the lowest genetic diversity was exhibited in Korean goat ($H_E$=0.381), and the highest in Chinese goat ($H_E$=0.669). After corrections for multiple significance tests, deviations from Hardy-Weinberg equilibrium were statistically significant over all populations and loci, reflecting the deficiencies of heterozygotes (global $F_{IS}$=0.053). Based on pairwise FST and Nm between different breeds, there was a great genetic differentiation between Korean goat and the other two breeds, indicating that these breeds have been genetically subdivided. Similarly, individual clustering based on the proportion of shared alleles showed that Korean goat individuals formed a single cluster separated from the other two goat breeds.

Clustering of extreme winds in the mixed climate of South Africa

  • Kruger, A.C.;Goliger, A.M.;Retief, J.V.;Sekele, S.S.
    • Wind and Structures
    • /
    • v.15 no.2
    • /
    • pp.87-109
    • /
    • 2012
  • A substantial part of South Africa is subject to more than one strong wind source. The effect of that on extreme winds is that higher quantiles are usually estimated with a mixed strong wind climate estimation method, compared to the traditional Gumbel approach based on a single population. The differences in the estimated quantiles between the two methods depend on the values of the Gumbel distribution parameters for the different strong wind mechanisms involved. Cluster analysis of the distribution parameters provides a characterization of the effect of the relative differences in their values, and therefore the dominance of the different strong wind mechanisms. For gusts, cold fronts tend to dominate over the coastal and high-lying areas, while other mechanisms, especially thunderstorms, are dominant over the lower-lying areas in the interior. For the hourly mean wind speeds cold fronts are dominant in the south-west, south and east of the country. On the West Coast the ridging of the Atlantic Ocean high-pressure system dominate in the south, while the presence of a deep trough or coastal low pressure system is the main strong wind mechanism in the north. In the central interior cold fronts tend to share their influence almost equally with other synoptic-scale mechanisms.