• 제목/요약/키워드: C-mean Clustering

검색결과 85건 처리시간 0.024초

차감 및 중력 fuzzy C-means 클러스터링을 이용한 칼라 영상 분할에 관한 연구 (Segmentation of Color Image by Subtractive and Gravity Fuzzy C-means Clustering)

  • 진영근;김태균
    • 전기전자학회논문지
    • /
    • 제1권1호
    • /
    • pp.93-100
    • /
    • 1997
  • 칼라 영상 분할의 한 방법으로 fuzzy C-means를 이용한 방법이 많이 연구되었으나, 이 방법은 클러스터의 개수가 정해져야 사용할 수 있는 방법이다. 분할해야 할 데이터가 많은 경우 예비 분할을 수행하여 예비 분할 되지 않는 데이터들에 대해서 상세 분할을 fuzzy C-means를 사용하여 분할 하나 예비 분할된 데이터의 클러스터 중심과 상세 분할로 만들어진 클러스터의 중심과는 연계성이 없어진다. 본 연구에서는 이것을 보완하기 위하여 차감 클러스터링을 사용하여 칼라 영상의 클러스터의 개수와 중심을 구한 후, 이것을 이용하여 영상을 예비 분할하고 중력을 가진 fuzzy C-means를 사용하여 분할되지 않은 나머지 부분과 클러스터의 중심을 최적화 시켜 분할하는 알고리듬을 제안한다. 제안된 방법의 정성적인 평가를 수행하여 본 논문에서 제시된 방법이 우수함을 보인다.

  • PDF

Possibilistic C-mean 클러스터링과 영역 확장을 이용한 칼라 영상 분할 (Color image segmentation using the possibilistic C-mean clustering and region growing)

  • 엄경배;이준환
    • 전자공학회논문지S
    • /
    • 제34S권3호
    • /
    • pp.97-107
    • /
    • 1997
  • Image segmentation is teh important step in image infromation extraction for computer vison sytems. Fuzzy clustering methods have been used extensively in color image segmentation. Most analytic fuzzy clustering approaches are derived from the fuzzy c-means (FCM) algorithm. The FCM algorithm uses th eprobabilistic constraint that the memberships of a data point across classes sum to 1. However, the memberships resulting from the FCM do not always correspond to the intuitive concept of degree of belongingor compatibility. moreover, the FCM algorithm has considerable trouble above under noisy environments in the feature space. Recently, the possibilistic C-mean (PCM) for solving growing for color image segmentation. In the PCM, the membersip values may be interpreted as degrees of possibility of the data points belonging to the classes. So, the problems in the FCM can be solved by the PCM. The clustering results by just PCM are not smoothly bounded, and they often have holes. So, the region growing was used as a postprocessing. In our experiments, we illustrated that the proposed method is reasonable than the FCM in noisy enviironments.

  • PDF

특이치 분해와 Fuzzy C-Mean(FCM) 군집화를 이용한 벡터양자화에 기반한 워터마킹 방법 (An Watermarking Method based on Singular Vector Decomposition and Vector Quantization using Fuzzy C-Mean Clustering)

  • 이병희;장우석;강환일
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.267-271
    • /
    • 2007
  • 본 논문은 원본이미지와 은닉이미지의 좋은 압축률과 만족할만한 이미지의 질, 그리고 외부공격에 강인한 이미지은닉의 한 방법으로 특이치 분해와 퍼지 군집화를 이용한 벡터양자화를 이용한 워터마킹 방법을 소개하였다. 실험에서는 은닉된 이미지의 비가시성과 외부공격에 대한 강인성을 증명하였다.

  • PDF

Design and Comparison of Error Correctors Using Clustering in Holographic Data Storage System

  • Kim, Sang-Hoon;Kim, Jang-Hyun;Yang, Hyun-Seok;Park, Young-Pil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1076-1079
    • /
    • 2005
  • Data storage related with writing and retrieving requires high storage capacity, fast transfer rate and less access time in. Today any data storage system can not satisfy these conditions, but holographic data storage system can perform faster data transfer rate because it is a page oriented memory system using volume hologram in writing and retrieving data. System architecture without mechanical actuating part is possible, so fast data transfer rate and high storage capacity about 1Tb/cm3 can be realized. In this paper, to correct errors of binary data stored in holographic digital data storage system, find cluster centers using clustering algorithm and reduce intensities of pixels around centers. We archive the procedure by two algorithms of C-mean and subtractive clustering, and compare the results of the two algorithms. By using proper clustering algorithm, the intensity profile of data page will be uniform and the better data storage system can be realized.

  • PDF

홀로그래픽 정보 저장 장치에서 클러스터링을 이용한 에러 감소 기법 제안 및 비교 (Design and Comparison of Error Reduction Methods Using Clustering in Holographic Data Storage System)

  • 김상훈;김장현;양현석;박영필
    • 정보저장시스템학회:학술대회논문집
    • /
    • 정보저장시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.83-87
    • /
    • 2005
  • Data storage related with writing and retrieving requires high storage capacity, fast transfer rate and less access time in. Today any data storage system can not satisfy these conditions, but holographic data storage system can perform faster data transfer rate because it is a page oriented memory system using volume hologram in writing and retrieving data. System architecture without mechanical actuating pare is possible, so fast data transfer rate and high storage capacity about 1Tb/cm3 can be realized. In this paper, to correct errors of binary data stored in holographic digital data storage system, find cluster centers using clustering algorithm and reduce intensities of pixels around centers. We archive the procedure by two algorithms of C-mean and subtractive clustering, and compare the results of the two algorithms. By using proper clustering algorithm, the intensity profile of data page will be uniform and the better data storage system can be realized.

  • PDF

클러스터링 기반 RBFNNs를 이용한 기상레이더 패턴분류기 설계 : 비교 연구 및 해석 (Design of Meteorological Radar Pattern Classifier Using Clustering-based RBFNNs : Comparative Studies and Analysis)

  • 최우용;오성권
    • 한국지능시스템학회논문지
    • /
    • 제24권5호
    • /
    • pp.536-541
    • /
    • 2014
  • 기상레이더를 통해 취득된 데이터에는 지형에코, 파랑에코, 이상에코, 그리고 청천에코등이 존재한다. 각 에코는 여러 종류의 비강수에코이고, 이 비강수에코를 제거하기 위해 각 에코들의 특성을 분석하였다. 기상레이더 데이터는 매우 방대한 양이기 때문에 전처리 절차를 통해 분석된다. 본 논문에서는 클러스터링 기반 방사형 기저함수 신경회로망(RBFNNs : Radial Basis Function Neural Networks)과 에코 판단 모듈을 이용하여 기상레이더 데이터에서 강수에코와 비강수에코들을 구별하기 위한 에코 패턴분류기를 설계하였다. HCM(Hard C-Mean) 클러스터링 기반 RBFNNs 와 FCM(Fuzzy C-Mean) 클러스터링 기반 RBFNNs를 이용하여 출력성능은 비교 및 분석된다.

특이치 분해와 Fuzzy C-Mean(FCM) 군집화를 이용한 벡터양자화에 기반한 워터마킹 방법 (An Watermarking Method Based on Singular Vector Decomposition and Vector Quantization Using Fuzzy C-Mean Clustering)

  • 이병희;장우석;강환일
    • 한국지능시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.964-969
    • /
    • 2007
  • 본 논문은 원본 영상과 은닉 영상의 좋은 압축률과 만족할만한 이미지의 질, 그리고 외부공격에 강인한 영상 은닉의 한 방법을 제안한다. 이 워터마킹 방법은 특이치 분해와 퍼지 군집화 기반 벡터양자화를 이용한다. 실험에서는 은닉된 영상의 비가시성과 외부공격에 대한 강인성을 증명하였다. 이 워터마킹기법의 장점은 워터마크된 영상이 이미 압축되어 있으므로 압축과정과 동시에 저작권 보호에 이용할 수 있다는 장점이 있다.

클러스터링 성능평가: 신경망 및 통계적 방법 (A Study on Performance Evaluation of Clustering Algorithms using Neural and Statistical Method)

  • 윤석환;신용백
    • 기술사
    • /
    • 제29권2호
    • /
    • pp.71-79
    • /
    • 1996
  • This paper evaluates the clustering performance of a neural network and a statistical method. Algorithms which are used in this paper are the GLVQ(Generalized Loaming vector Quantization) for a neural method and the k -means algorithm for a statistical clustering method. For comparison of two methods, we calculate the Rand's c statistics. As a result, the mean of c value obtained with the GLVQ is higher than that obtained with the k -means algorithm, while standard deviation of c value is lower. Experimental data sets were the Fisher's IRIS data and patterns extracted from handwritten numerals.

  • PDF

국부 확률을 이용한 데이터 분류에 관한 연구 (A Study on Data Clustering Method Using Local Probability)

  • 손창호;최원호;이재국
    • 제어로봇시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.46-51
    • /
    • 2007
  • In this paper, we propose a new data clustering method using local probability and hypothesis theory. To cluster the test data set we analyze the local area of the test data set using local probability distribution and decide the candidate class of the data set using mean standard deviation and variance etc. To decide each class of the test data, statistical hypothesis theory is applied to the decided candidate class of the test data set. For evaluating, the proposed classification method is compared to the conventional fuzzy c-mean method, k-means algorithm and Discriminator analysis algorithm. The simulation results show more accuracy than results of fuzzy c-mean method, k-means algorithm and Discriminator analysis algorithm.

레이더 자료의 군집화를 통한 Mean Field Rainfall Bias의 보정 (Adjustment of the Mean Field Rainfall Bias by Clustering Technique)

  • 김영일;김태순;허준행
    • 한국수자원학회논문집
    • /
    • 제42권8호
    • /
    • pp.659-671
    • /
    • 2009
  • 본 연구에서는 레이더 강우량 자료의 편차보정에 사용되는 G/R비의 정확도를 향상시키기 위하여 fuzzy c-means 방법을 사용한 자료의 군집화를 적용하였다. 대상 레이더자료는 광덕산 레이더기지의 자료로서 유효범위 100km이내의 자료를 대상으로 지상관측망인 기상청의 AWS(Automatic Weather System) 지점에서 관측한 자료와의 비교를 통하여 G/R비를 구하였다. G/R비를 구하는데 있어서 전체 유효범위를 대상으로 동일한 방법을 사용한 경우와 레이더 자료의 군집화를 통해서 지형적인 효과를 고려한 경우를 비교하였으며, AWS 실측강우량과 G/R비를 통한 레이더 강우량 자료의 비교를 위하여 절대상대오차와 평균제곱근오차 등을 비교분석하였다. 그 결과 전체유효범위를 대상으로 동일하게 G/R비를 적용하여 구한 레이더 강우량에 비하여 군집분석을 이용하여 지형효과를 고려한 G/R비를 적용한 레이더 강우량의 오차가 더 적게 나타났다.