• 제목/요약/키워드: C-ion irradiation

검색결과 123건 처리시간 0.016초

산란전자선을 이용한 강내측방조사기구의 제작과 특성 (Fabrication of Backscatter Electron Cones for Radiation Therapy)

  • 추성실;서창옥;김귀언
    • Radiation Oncology Journal
    • /
    • 제19권1호
    • /
    • pp.74-80
    • /
    • 2001
  • 목적 : 강내에 발생된 종양치료용 원통형 전자선 조사기구(Electron cone)는 기하학적으로 강내벽에 위치한 종양치료에 부적당하므로 후방 또는 측면방향으로 산란되는 전자선을 이용하여 체강 내벽점막 등에 발생된 종양을 효과적으로 치료할 수 있는 산란전자선 치료방법을 개발하고자 한다. 강내조사기구내에 전자선 입사방향에 수직 또는 일정한 각도의 산란판을 배치하여 측면방향으로 산란전자선을 방출시키는 강내 측면조사기구를 제작하고 산란판의 제원과 전자선 에너지에 따라 산란방출된 산란선의 특성과 조직내 선량분포를 측정 평가하였다. 새상 미 방법 : 외부조사용 전자선조사기구(Electron cone) 대신에 강내 삽입용 전자산란선 조사통(Intracavitary backscatter electron cone)과 이를 콜리메이터와 연결시킬 수 있는 차폐연결기구(Shielded electron device)를 고안하였다. 산란전자선 조사기구는 직경이 $2\~3\;cm$이고 길이가 25 cm인 금속(내식강)원통을 이용하였으며 입구에서 20 cm위치에 산란판을 부착시키고 원통 측면에 직경 $1\~2\;cm$의 산란선 방출구를 제작하였다. 산란판은 $2\~10\;mm$의 연판을 사용하였으며, 오제전자와 특성 엑스선을 제거하기 위하여 주석, 구리, 알루미늄판 등을 부착시켰으며 종양위치를 관찰할 수 있도록 표면을 처리하였다. 고에너지 방사선치료용 선형가속기(Clinac 2100C/D)에서 발생된 $6\~12\;MeV$ 에너지의 전자선을 이용하였으며 선량측정은 평행평판형 전리상(Markus chamber, PTW 23343)을 조직등가 팬텀(Polystyrene)에 삽입하여 측정하였다. 전자산란선의 에너지분포는 Monte Carlo (EGS4) 계산으로 예측하였으며 조직내 선량분포는 필름 흑화도(X-Omat V, Wellhofer 700i)에 의하여 측정하였다. 결과 : 전자선 입사에너지가 6 MeV일 때 전자산란선의 평균 에너지는 약 1.5 MeV 이었으며 산란각이 클수록 에너지는 줄어들었다. 입사 전자선 에너지 6 MeV 에서 산란판의 각도 $30^{\circ},\;45^{\circ}$ 에 따른 최대선량지점은 산란선 방출구의 중심에서 각각 5 mm 및 -10 mm지점의 표면에서 발생되며 입사전자선에 대한 전자산란선의 선량비는 약 $8.5\%$ 내외로 측정되었다. 입사전자선에너지 6 MeV에서 산란판각도 $45^{\circ},\;60^{\circ}$에 의한 $50\%$의 심부선량분포는 각각 6 mm와 7 mm 깊이에 도달하였으며 입사에너지 증가에 비례하였다. 결론 : 전자선 후방산란의 특성을 연구하고 이를 인체 강내 측방 점막부위에 발생한 종양을 효과적으로 치료할 수 있는 강내 전자산란선 조사통을 고안 제작 하였다. 시험용으로 제작한 전자산란선 조사기구를 이용하여 전자선 에너지와 산란판의 각도에 따른 산란선의 선량비율과 심부율을 측정하였다. 구강, 자궁, 직장 등 강내측벽 점막 등에 발생된 악성종양의 모양과 깊이에 가장 적당한 입사 에너지, 산란판의 각도, 산란창구 및 조사각도를 선택함으로서 방사선치료방법을 향상시킬 수 있을 것이라고 기대된다.

  • PDF

폐암 환자에서 Electronic Portal Imaging Device를 이용한 자세 오차 및 종양 이동 거리의 객관적 측정 (Objective Analysis of the Set-up Error and Tumor Movement in Lung Cancer Patients using Electronic Portal Imaging Device)

  • 김웅철;정은지;이창걸;추성실;김귀언
    • Radiation Oncology Journal
    • /
    • 제14권1호
    • /
    • pp.69-76
    • /
    • 1996
  • 목적 : electronic portal imaging device(EPID)를 이용하여 폐암 환자에서 시행한 검증 영상을 분석하여 3차원 입체 조형치료계획 시 자세 오차(set-up error)와 종양의 이동 거리를 고려한 적절한 차폐 여유를 평가해 보고자 한다. 대상 및 방법 : 1995년 연세암센터 치료방사선과에 내원하여 EPID가 장착된 Clinac 2100C/D를 이용하여 치료받은 폐암 환자 10명을 대상으로 하였다. 환자 1인 당 1 port에 대한 검증 영상을 매일 얻어 random 오차와 systematic 오차를 구했고, 치료 1회 당 중복 영상을 얻어 종양의 움직임을 구했다. 매일 얻은 검증 영상은 103개이었고, 중복 영상은 10개이었다. 결과 : 전체 10 명의 환자의 x 축, y 축으로의 평균 이동은 각각 1.41 mm, 1.78 mm 이었고 systematic 이동은 표준편차가 x 축, y 축으로 각각 4.63 mm, 4.11 mm이었다. random 이동은 각 환자의 평균 이동으로부터 x 축, y 축으로 표준편차가 각각 4.17 mm, 3.31 mm 이었다. 호흡에 의한 y 축으로의 이동은 평균 12.2 mm이었고, 표준편차는 4.03 mm 이었다. 결론 : 폐암 환자에서 3차원 방사선치료를 시행하려고 할 경우 치료 계획 시 clinical target volume에서 x, y 축으로 각각 10 mm, 25 mm 정도의 여유가 필요하다고 보이며, 치료 초기에 각 환자별로 매일 EPID를 이용하여 얻은 검증 영상과, 중복 영상으로 차폐 여유를 적절히 조절해 주어야 할 것이다.

  • PDF

6 MeV 전자선의 차폐물질 원자번호와 조사야 크기에 따른 선량변화 연구 (The Study of Dose Change by Field Effect on Atomic Number of Shielding Materals in 6 MeV Electron Beam)

  • 이승훈;곽근탁;박주경;김양수;차석용
    • 대한방사선치료학회지
    • /
    • 제25권2호
    • /
    • pp.145-151
    • /
    • 2013
  • 목 적: 본 연구에서 우리는 6 MeV 전자선의 조사야 확대에 따른 선량변화가 차폐물질 원자번호와 관계가 있음을 알아보고 그 영향인자를 분석 하고자 한다. 대상 및 방법: 먼저 평행평판형 전리함(Exradin P11)을 $25{\times}25cm^2$ 폴리스티렌 팬텀표면에 평탄하게 끼운다. 허용투과율 5% 두께의 알루미늄, 구리, 납 물질들을 팬텀 상단에 차폐시킨 후 조사야 $6{\times}6$, $10{\times}10$ 그리고 $20{\times}20cm^2$별로 측정하였다. 조사조건은 선원-표면간거리 100 cm에서 기준조사야인 $10{\times}10cm^2$에 6 MeV 전자선을 이용하여 100 cGy 조사하였다. 다음으로 MCNP (Monte Carlo N Particle Transport Code)를 이용하여 각 물질 통과 후 발생되는 광자수, 전자수, 그리고 축적에너지를 계산하였다. 결 과: 허용투과율 5% 두께에 대한 차폐물 종류에 따른 측정결과 조사야 $10{\times}10cm^2$을 기준으로 한 $6{\times}6cm^2$$20{\times}20cm^2$의 두께변화율은 알루미늄에서 각각 +0.06%와 -0.06%, 구리에서 각각 +0.13%와 -0.1%, 납에서 각각 -1.53%와 +1.92%였다. 계산결과 조사야 $10{\times}10cm^2$ 대비 $6{\times}6cm^2$, $20{\times}20cm^2$의 축적에너지는 차폐를 하지 않았을 경우 각각 -4.3%와 +4.85%, 알루미늄 사용 시 각각 -0.87%와 +6.93%, 구리 사용 시 각각 -2.46%와 +4.48%, 납 사용 시 각각 -4.16%와 +5.57%였다. 광자수의 경우 차폐를 하지 않았을 경우 각각 -8.95%와 +15.92%, 알루미늄 사용 시 각각 -15.56%와 +16.06%, 구리 사용시 각각 -12.27%와 +15.53%, 납 사용 시 각각 -12.36%와 +19.81%였다. 전자수의 경우 차폐를 하지 않았을 경우 각각 -3.92%와 +4.55%, 알루미늄 사용 시 각각 +0.59%와 +6.87%, 구리 사용 시 각각 -1.59%와 +3.86%, 납 사용 시 각각 -5.15%와 +4.00%였다. 결 론: 본 연구로 조사야 증가함에 따른 차폐물 두께가 저 원자번호에서 감소하며, 고 원자번호에서는 증가함을 볼 수 있었으며, 계산을 통해 저 원자번호물질에서는 저지방사선, 고 원자번호물질에서는 산란전자가 영향을 주는 것을 알 수 있었다.

  • PDF