• Title/Summary/Keyword: C-V Plot

Search Result 114, Processing Time 0.022 seconds

Sol-Gel Synthesis, Crystal Structure, Magnetic and Optical Properties in ZnCo2O3 Oxide

  • Das, Bidhu Bhusan;Barman, Bittesh
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.453-458
    • /
    • 2019
  • Synthesis of ZnCo2O3 oxide is performed by sol-gel method via nitrate-citrate route. Powder X-ray diffraction (XRD) study shows monoclinic unit cell having lattice parameters: a = 5.721(1) Å, b = 8.073(2) Å, c = 5.670(1) Å, β = 93.221(8)°, space group P2/m and Z = 4. Average crystallite sizes determined by Scherrer equation are the range ~14-32 nm, whereas SEM micrographs show nano-micro meter size particles formed in ZnCo2O3. Endothermic peak at ~798 K in the Differential scanning calorimetric (DSC) trace without weight loss could be due to structural transformation and the endothermic peak ~1143 K with weight loss is due to reversible loss of O2 in air atmosphere. Energy Dispersive X-ray (EDX) analysis profile shows the presence of elements Zn, Co and O which indicates the purity of the sample. Magnetic measurements in the range of +12 kOe to -12 kOe at 10 K, 77 K, 120 K and at 300 K by PPMS-II Physical Property Measurement System (PPMS) shows hysteresis loops having very low values of the coercivity and retentivity which indicates the weakly ferromagnetic nature of the oxide. Observed X-band EPR isotropic lineshapes at 300 K and 77 K show positive g-shift at giso ~2.230 and giso ~2.217, respectively which is in agreement with the presence of paramagnetic site Co2+(3d7) in the oxide. DC conductivity value of 2.875 ×10-8 S/cm indicates very weakly semiconducting nature of ZnCo2O3 at 300 K. DRS absorption bands ~357 nm, ~572 nm, ~619 nm and ~654 nm are due to the d-d transitions 4T1g(4F)→2Eg(2G), 4T1g(4F)→4T1g(4P), 4T1g(4F)→4A2g(4F), 4T1g(4F)→4T2g(4F), respectively in octahedral ligand field around Co2+ ions. Direct band gap energy, Eg~ 1.5 eV in the oxide is obtained by extrapolating the linear part of the Tauc plot to the energy axis indicates fairly strong semiconducting nature of ZnCo2O3.

Degradation Mechanisms of Organic Light-emitting Devices with a Glass Cap (유리 덮개로 보호된 OLED소자의 발광특성 저하 연구)

  • Yang Yong Suk;Chu Hye Yong;Lee Jeong-Ik;Park Sang-He;Hwang Chi Sun;Chung Sung Mook;Do Lee-Mi;Kim Gi Heon
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.64-72
    • /
    • 2006
  • We demonstrated organic light-emitting devices (OLEDs) based on the organic thin-film materials such as tris-(8-hydroxyquinoline) aluminum $(Alq_3)$. The structure of OLEDs was vacuum deposited upon transparent and thin glass substrates pre-coated with a transparent, conducting indium tin oxide thin film. The luminance characteristics, current, capacitance, and dispersion factor for degraded OLEDs, which were made by various bias currents $(0.5mA\;{\leq}\;I_{Bias}\;{\leq}9mA)$, are studied. The current dependences of lifetime were divided at approximately 2mA, and they represented nearly linear behaviors but had different slopes in a logarithmic plot of lifetime versus bias current. With lighting OLEDs, the anomaly of capacitance, as shown in the CV curve, occurred because of two factors, polarization in the bulk of organic materials and the interface between the metal and organic layers. In decayed OLEDs that had lower bias currents of less than 2mA, it was found that the degradation of luminance was related to both the decrease of polarization and to the lowering of the injection barrier.

Energy Requirements in Early Life Are Similar for Male and Female Goat Kids

  • Bompadre, T.F.V.;Neto, O. Boaventura;Mendonca, A.N.;Souza, S.F.;Oliveira, D.;Fernandes, M.H.M.R.;Harter, C.J.;Almeida, A.K.;Resende, K.T.;Teixeira, I.A.M.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.12
    • /
    • pp.1712-1720
    • /
    • 2014
  • Little is known about the gender differences in energetic requirements of goats in early life. In this study, we determined the energy requirements for maintenance and gain in intact male, castrated male and female Saanen goat kids using the comparative slaughter technique and provide new data on their body composition and energy efficiency. To determine the energy requirements for maintenance, we studied 21 intact males, 15 castrated males and 18 females ($5.0{\pm}0.1kg$ initial body weight (BW) and $23{\pm}5d$ of age) using a split-plot design with the following main factors: three genders (intact males, castrated males, and females) and three dry matter intake levels (ad libitum, 75% and 50% of ad libitum intake). A slaughter group included three kids, one for each nutritional plane, of each gender, and all three animals within a group were slaughtered when the ad libitum kid reached 15 kg in BW. Net energy requirements for gain were obtained for 17 intact males, eight castrated males and 15 females ($5.1{\pm}0.4kg$ BW and $23{\pm}13d$ of age). Animals were fed ad libitum and slaughtered when they reached 5, 10, and 15 kg in BW. A digestion trial was performed with nine kids of each gender to determine digestible energy, metabolizable energy and energy metabolizability of the diet. Our results show no effect of gender on the energy requirements for maintenance and gain, and overall net energy for maintenance was $205.6kJ/kg^{0.75}$ empty body weight gain (EBW) ($170.3kJ/kg^{0.75}$ BW) from 5 to 15 kg BW. Metabolizable energy for maintenance was calculated by iteration, assuming heat production equal to metabolizable energy intake at maintenance, and the result was $294.34kJ/kg^{0.75}$ EBW and $k_m$ of 0.70. As BW increased from 5 to 15 kg for all genders, the net energy required for gain increased from 9.5 to 12.0 kJ/g EBW gain (EWG), and assuming $k_g=0.47$, metabolizable energy for gain ranged from 20.2 to 25.5 kJ/g EWG. Our results indicate that it is not necessary to formulate diets with different energetic content for intact male, castrated male and female Saanen goat kids weighing from 5 to 15 kg.

Gas Exchanges and Dehydration in Different Intensities of Conditioning in Tifton 85 Bermudagrass: Nutritional Value during Hay Storage

  • Pasqualotto, M.;Neres, M.A.;Guimaraes, V.F.;Klein, J.;Inagaki, A.M.;Ducati, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.807-815
    • /
    • 2015
  • The present study aimed at evaluating the intensity of Tifton 85 conditioning using a mower conditioner with free-swinging flail fingers and storage times on dehydration curve, fungi presence, nutritional value and in vitro digestibility of Tifton 85 bermudagrass hay dry matter (DM). The dehydration curve was determined in the whole plant for ten times until the baling. The zero time corresponded to the plant before cutting, which occurred at 11:00 and the other collections were carried out at 8:00, 10:00, 14:00, and 16:00. The experimental design was randomised blocks with two intensities of conditioning (high and low) and ten sampling times, with five replications. The high and low intensities related to adjusting the deflector plate of the free iron fingers (8 and 18 cm). In order to determine gas exchanges during Tifton 85 bermudagrass dehydration, there were evaluations of mature leaves, which were placed in the upper middle third of each branch before the cutting, at every hour for 4 hours. A portable gas analyser was used by an infrared IRGA (6400xt). The analysed variables were photosynthesis (A), stomatal conductance (gs), internal $CO_2$ concentration (Ci), transpiration (T), water use efficiency (WUE), and intrinsic water use efficiency (WUEi). In the second part of this study, the nutritional value of Tifton 85 hay was evaluated, so randomised blocks were designed in a split plot through time, with two treatments placed in the following plots: high and low intensity of cutting and five different time points as subplots: cutting (additional treatment), baling and after 30, 60, and 90 days of storage. Subsequently, fungi that were in green plants as well as hay were determined and samples were collected from the grass at the cutting period, during baling, and after 30, 60, and 90 days of storage. It was observed that Tifton 85 bermudagrass dehydration occurred within 49 hours, so this was considered the best time for drying hay. Gas exchanges were more intense before cutting, although after cutting they decreased until ceasing within 4 hours. The lowest values of acid detergent insoluble nitrogen were obtained with low conditioning intensity after 30 days of storage, 64.8 g/kg DM. The in vitro dry matter of Tifton 85 bermudagrass did not differ among the storage times or the conditioning intensities. There was no fungi present in the samples collected during the storage period up to 90 days after dehydration, with less than 30 colony forming units found on plate counting. The use of mower conditioners in different intensities of injury did not speed up the dehydration time of Tifton 85.