• Title/Summary/Keyword: C-V Converter

Search Result 162, Processing Time 0.022 seconds

A Self-Driven Active Clamp Forward Converter Using the Auxiliary Winding of the Power Transformer (변압기 보조권선을 이용한 자기 구동 능동 클램프 포워드 컨버터)

  • 이광운;임범선;김희준
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.5
    • /
    • pp.350-354
    • /
    • 2003
  • This study proposes a new self-driven active clamp forward converter eliminating the extra drive circuit for the active clamp switch. The converter used the auxiliary winding of the power transformer to drive the active clamp switch and a simple R-C circuit to get the dead time between the two switches. The operation principle was presented and experimental results were used to verify theoretical predictions. A 100-W (5V/20A) prototype converter built that only exhibited 1.5-turn winding number in the auxiliary winding was sufficient to drive the active clamp switch on the input of 50V. Finally, the measured efficiency of the converter was presented and the maximum efficiency of 91% was obtained.

High Performance Switched Reluctance Motor Drive for Automobiles using C-dump Converters

  • Song Sang-Hoon;Yoon Yong-Ho;Lee Tae-Won;Kim Yeun-Chung;Won Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.992-996
    • /
    • 2004
  • Small electric motors in an automobile perform various tasks such as engine cooling, pumping, and in heating, ventilating, and air-conditioning (HVAC) system. At present, most of dc motors are supplied by 12V or 24V batteries. However, DC motors surfer from lack of efficiency, low life cycles and unreliability. Therefore, there is a growing interest in substituting DC motors for advanced AC motors including switched reluctance motors. Although there are several other forms SRM converters, they are either unsatisfactory to the control performance or unsuitable for the 12V-battery powered 3-phase SRM drives. Taking into account the requirement for effective operation and simplicity structure of converter in the limited internal environment of automobiles, the author inclines toward selecting the modified C-dump converter as well as the energy efficient C-dump converter. This is so that more economical and efficient converter topology in automobile industries can be utilized. This paper describes the foundation for the design and development of a 12V-250W-3000rpm SRM drives for automobiles. Furthermore, complete circuit, computer simulation and experiment results are presented to verify the performance of the C-dump converters.

  • PDF

Design of a 2kW Bidirectional DC-DC Converter with 99% Efficiency for Energy Storage System (에너지 저장장치를 위한 99% 고효율 2kW급 양방향 dc-dc 컨버터 설계)

  • Lee, Taeyeong;Cho, Younghoon;Cho, Byung-Geuk
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.85-86
    • /
    • 2015
  • In this paper, the bidirectional DC-DC converter is composed of the 900V Silicon-Carbide(SiC) devices to get high efficiency. The 900V SiC device is better than a similar current rated traditional SiC device. it has a lower drain-source resistance and output capacitance. therefore it can reduce the switching and the conduction losses of the DC-DC converter. The experimental results verify the improvement of efficiency and usefulness of 900V SiC device.

  • PDF

A SiC MOSFET Based High Efficiency Interleaved Boost Converter for More Electric Aircraft

  • Zaman, Haider;Zheng, Xiancheng;Yang, Mengxin;Ali, Husan;Wu, Xiaohua
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.23-33
    • /
    • 2018
  • Silicon Carbide (SiC) MOSFET belongs to the family of wide-band gap devices with inherit property of low switching and conduction losses. The stable operation of SiC MOSFET at higher operating temperatures has invoked the interest of researchers in terms of its application to high power density (HPD) power converters. This paper presents a performance study of SiC MOSFET based two-phase interleaved boost converter (IBC) for regulation of avionics bus voltage in more electric aircraft (MEA). A 450W HPD, IBC has been developed for study, which delivers 28V output voltage when supplied by 24V battery. A gate driver design for SiC MOSFET is presented which ensures the operation of converter at 250kHz switching frequency, reduces the miller current and gate signal ringing. The peak current mode control (PCMC) has been employed for load voltage regulation. The efficiency of SiC MOSFET based IBC converter is compared against Si counterpart. Experimentally obtained efficiency results are presented to show that SiC MOSFET is the device of choice under a heavy load and high switching frequency operation.

A Study of On-Chip Voltage Down Converter for Semiconductor Devices

  • Seo, Hae-Jun;Kim, Young-Woon;Cho, Tae-Won
    • Journal of IKEEE
    • /
    • v.12 no.1
    • /
    • pp.34-42
    • /
    • 2008
  • This paper proposes a new on-chip voltage down converter(VDC), which employs a new reference voltage generator(RVG). The converter adopts a temperature-independence reference voltage generator, and a voltage-up converter. The architecture of the proposed VDC has a high-precision, and it was verified based on a 0.25${\mu}m$ 1P5M standard CMOS technology. For 2.5V to 1.0V conversion, the RVG circuit has a good characteristics such as temperature dependency of only 0.2mV/$^{\circ}C$, and the voltage-up circuit has a good voltage deviation within ${\pm}$0.12% for ${\pm}$5% variation of supply voltage VDD. The output voltage is stabilized with ${\pm}$1mV for load current varying from 0 to 100mA.

  • PDF

Single Core Push Pull Forward Converter Operational Characteristics (싱글 코어 푸시풀 포워드 컨버터 동작특성)

  • Kim Chang-Sun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.592-597
    • /
    • 2005
  • The push pull forward converter is suitable in a low output voltage, a high output current applications with wide input voltage ranges. All magnetic components including output inductor, transformer and input filter can be integrated into single EI/EE core. The integrated push pull forward converter is considered through the comparison of efficiency according to the circuit parameters. The Nicera company's 5M FEE18/8/10C and NC-2H FEI32/8/20 cores are used for the transformer. The integrated push pull forward converter ratings are of $36\~72V$ input and 3.3V/30A output. In case that NC-2H FEI32/8/20 core used in the converter, the efficiency is measured up to $83.5\%$ at the switching frequency 200 kHz and the 11A load. The efficiencies of $76.4\%$ at a full load and $82.95\%$ at a half load are measured.

Performance of an SiC-MOSFET Based 11-kW Bi-directional On-board Charger (SiC-MOSFET 기반 11-kW급 양방향 탑재형 충전기 성능)

  • Lee, Sang-Youn;Lee, Woo-Seok;Lee, Jun-Young;Lee, Il-Oun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.376-379
    • /
    • 2021
  • The design and performance of a SiC-MOSFET-based 11-kW bi-directional on-board charger (OBC) for electric vehicles is presented. The OBC consists of a three-phase two-level AC/DC converter and a CLLLC resonant converter. All the power devices are implemented with SiC-MOSFETs to reduce the conduction losses generated in the OBC, and the DC-link voltage is designed to track the level of battery voltage in the forward and reverse powering modes. As a result, the CLLLC resonant converter always runs at the switching frequency near the resonant frequency, resulting in high-efficiency operation at the maximum powering modes. As the DC-link voltage varies according to the battery voltage, the AC/DC converter in the proposed OBC adopts an adaptive DC-link voltage controller. The performance of the proposed 11-kW OBC is verified by a prototype converter with the following specifications: three-phase 60-Hz 380-V input, 11-kW capacity, and battery voltage range of 214-413-V, resulting in the conversion efficiency of over 95.0-% in the forward and reverse powering modes.

A Remote Control of a Buck-typed DC-DC Converter using DSP (DSP를 이용한 강압형 DC-DC 컨버터의 원격제어)

  • Kim, Youn-Seo;Yang, Oh
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.305-308
    • /
    • 2002
  • Because the digital control includes microprocessor different from an analog control, the digital control enables to monitor internal parameters of DC-DC converter and to control output voltage remotely by communicating with a Window based PC and also to monitor whether exact voltage is output or not. These things are impossible in an analog control. In this paper, a simple buck converter controlled by DSP is implemented. This converter outputs 0V to 5V from 15V input voltage and is controlled by a PD algorithm using DSP(TMS320C31). Finally the response characteristics of a step reference voltage and a digital controlled converter are analyzed to verify the usefulness of this converter.

  • PDF

Design of a CMOS DC-to-DC Converter for Portable Devices (휴대용 기기를 위한 CMOS DC-DC 변환기 설계)

  • O, N.G.;Lee, J.K.;Cho, I.H.;Jang, S.H.;Cha, C.H.;Yu, C.G.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.520-521
    • /
    • 2008
  • This paper describes a low voltage, low-power CMOS buck DC/DC converter, which has a simple common-gate current sensing circuit. It consumes low power because it includes less transistors than other converters which use operational amplifiers for current sensing. The designed DC-DC converter is fabricated in a 0.18um CMOS technology. A maximum efficiency of 88% has been obtained with the proposed circuit. It has $2V{\sim}3.7V$ input voltage range, $1V{\sim}2.5V$ output voltage range and maximum output current of 1000mA.

  • PDF

Prototype Development of 3-Phase 3.3kV/220V 6kVA Modular Semiconductor Transformer (3상 3.3kV/220V 6kVA 모듈형 반도체 변압기의 프로토타입 개발)

  • Kim, Jae-Hyuk;Kim, Do-Hyun;Lee, Byung-Kwon;Han, Byung-Moon;Lee, Jun-Young;Choi, Nam-Sup
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1678-1687
    • /
    • 2013
  • This paper describes a prototype of 3-phase 3.3kV/220V 6kVA modular semiconductor transformer developed in the lab for feasibility study. The developed prototype is composed of three single-phase units coupled in Y-connection. Each single-phase unit with a rating of 1.9kV/127V 2kVA consists of a high-voltage high-frequency resonant AC-DC converter, a low-voltage hybrid-switching DC-DC converter, and a low-voltage hybrid-switching DC-AC converter. Also each single-phase unit has two DSP controllers to control converter operation and to acquire monitoring data. Monitoring system was developed based on LabView by using CAN communication link between the DSP controller and PC. Through various experimental analyses it was verified that the prototype operates with proper performance under normal and sag condition. The system efficiency can be improved by adopting optimal design and replacing the IGBT switch with the SiC MOSFET switch. The developed prototype confirms a possibility to build a commercial high-voltage high-power semiconductor transformer by increasing the number of series-connected converter modules in high-voltage side and improving the performance of switching element.