• 제목/요약/키워드: C-NN model

검색결과 33건 처리시간 0.026초

피에조콘을 이용한 선행압밀하중 결정 신경망 모델의 초기 연결강도 의존성 개선 (Improvement of Initial Weight Dependency of the Neural Network Model for Determination of Preconsolidation Pressure from Piezocone Test Result)

  • 박솔지;주노아;박현일;김영상
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.456-463
    • /
    • 2009
  • The preconsolidation pressure has been commonly determined by oedometer test. However, it can also be determined by in-situ test, such as piezocone test with theoretical and(or) empirical correlations. Recently, Neural Network(NN) theory was applied and some models were proposed to estimate the preconsolidation pressure or OCR. However, since the optimization process of synaptic weights of NN model is dependent on the initial synaptic weights, NN models which are trained with different initial weights can't avoid the variability on prediction result for new database even though they have same structure and use same transfer function. In this study, Committee Neural Network(CNN) model is proposed to improve the initial weight dependency of multi-layered neural network model on the prediction of preconsolidation pressure of soft clay from piezocone test result. It was found that even though the NN model has the optimized structure for given training data set, it still has the initial weight dependency, while the proposed CNN model can improve the initial weight dependency of the NN model and provide a consistent and precise inference result than existing NN models.

  • PDF

Effects of upstream two-dimensional hills on design wind loads: A computational approach

  • Bitsuamlak, G.;Stathopoulos, T.;Bedard, C.
    • Wind and Structures
    • /
    • 제9권1호
    • /
    • pp.37-58
    • /
    • 2006
  • The paper describes a study about effects of upstream hills on design wind loads using two mathematical approaches: Computational Fluid Dynamics (CFD) and Artificial Neural Network (NN for short). For this purpose CFD and NN tools have been developed using an object-oriented approach and C++ programming language. The CFD tool consists of solving the Reynolds time-averaged Navier-Stokes equations and $k-{\varepsilon}$ turbulence model using body-fitted nearly-orthogonal coordinate system. Subsequently, design wind load parameters such as speed-up ratio values have been generated for a wide spectrum of two-dimensional hill geometries that includes isolated and multiple steep and shallow hills. Ground roughness effect has also been considered. Such CFD solutions, however, normally require among other things ample computational time, background knowledge and high-capacity hardware. To assist the enduser, an easier, faster and more inexpensive NN model trained with the CFD-generated data is proposed in this paper. Prior to using the CFD data for training purposes, extensive validation work has been carried out by comparing with boundary layer wind tunnel (BLWT) data. The CFD trained NN (CFD-NN) has produced speed-up ratio values for cases such as multiple hills that are not covered by wind design standards such as the Commentaries of the National Building Code of Canada (1995). The CFD-NN results compare well with BLWT data available in literature and the proposed approach requires fewer resources compared to running BLWT experiments.

산업재해의 최적 예측모형을 위한 근사모형에 관한 연구 (A Study on Approximation Model for Optimal Predicting Model of Industrial Accidents)

  • 임영문;유창현
    • 대한안전경영과학회지
    • /
    • 제8권3호
    • /
    • pp.1-9
    • /
    • 2006
  • Recently data mining techniques have been used for analysis and classification of data related to industrial accidents. The main objective of this study is to compare algorithms for data analysis of industrial accidents and this paper provides an optimal predicting model of 5 kinds of algorithms including CHAID, CART, C4.5, LR (Logistic Regression) and NN (Neural Network) with ROC chart, lift chart and response threshold. Also, this paper provides an approximation model for an optimal predicting model based on NN. The approximation model provided in this study can be utilized for easy interpretation of data analysis using NN. This study uses selected ten independent variables to group injured people according to a dependent variable in a way that reduces variation. In order to find an optimal predicting model among 5 algorithms, a retrospective analysis was performed in 67,278 subjects. The sample for this work chosen from data related to industrial accidents during three years ($2002\;{\sim}\;2004$) in korea. According to the result analysis, NN has excellent performance for data analysis and classification of industrial accidents.

피에조콘을 이용한 선행압밀하중 결정 신경망 모델의 구조 최적화 및 초기 연결강도 의존성 개선 (Structural Optimization and Improvement of Initial Weight Dependency of the Neural Network Model for Determination of Preconsolidation Pressure from Piezocone Test Result)

  • 김영상;주노아;박현일;박솔지
    • 대한토목학회논문집
    • /
    • 제29권3C호
    • /
    • pp.115-125
    • /
    • 2009
  • 지반의 응력이력을 정의하는데 이용되는 선행압밀하중은 일반적으로 일차원 실내압밀실험으로부터 결정되어져 왔으나 피에조콘과 같은 원위치 시험의 관측값을 이용한 이론적인 방법과 경험적인 상관관계를 통한 결정도 가능하다. 최근 선행압밀하중을 결정하기 위한 인공신경망 모델들이 제안된 바 있으며, 기존의 이론적 경험적 선행압밀하중 추정 방법들이 갖는 지역의존성의 문제를 극복하고 예측 정확도 면에서도 크게 개선된 것으로 보고되었다. 그러나 인공신경망 모델은 모델구조와 학습과정에서 초기에 무작위로 부여되는 연결강도에 영향을 받아 예측에 변동성이 존재한다. 본 연구에서는 기존의 피에조콘 결과를 이용한 선행압밀하중 추정 인공신경망 모델이 연약지반에서 선행압밀하중 예측 시 보이는 변동성을 개선하기 위하여 신경망 모델의 구조 최적화를 수행하고 군집신경망 모델을 구축하였다. 제안된 군집신경망 모델을 이용한 예측결과는 기존의 다층신경망 모델 및 이론적 경험적 모델들과 비교되었다. 연구결과, 최적화된 구조를 갖는 다층신경망 모델일지라도 초기 연결강도에 따라 최종 학습 후 예측결과의 변동성이 여전히 존재하나, 다층신경망을 네트워크로 연결하여 제안된 군집신경망 모델은 기존의 다층신경망 모델들이 갖는 초기 연결강도 의존성을 개선하여 다층신경망 모델에 비해 일관성 있으며 보다 정확한 예측이 가능한 것으로 나타났다.

k-NN을 활용한 터보팬 엔진의 잔여 유효 수명 예측 모델 제안 (A Proposal of Remaining Useful Life Prediction Model for Turbofan Engine based on k-Nearest Neighbor)

  • 김정태;서양우;이승상;김소정;김용근
    • 한국산학기술학회논문지
    • /
    • 제22권4호
    • /
    • pp.611-620
    • /
    • 2021
  • 정비 산업은 사후정비, 예방정비를 거쳐, 상태기반 정비를 중심으로 진행되고 있다. 상태기반 정비는 장비의 상태를 파악하여, 최적 시점에서의 정비를 수행한다. 최적의 정비 시점을 찾기 위해서는 장비의 상태, 즉 잔여 유효 수명을 정확하게 파악하는 것이 중요하다. 이에, 본 논문은 시뮬레이션 데이터(C-MAPSS)를 사용한 터보팬 엔진의 잔여 유효수명(RUL, Remaining Useful Life) 예측 모델을 제시한다. 모델링을 위해 C-MAPSS(Commercial Modular Aero-Propulsion System Simulation) 데이터를 전처리, 변환, 예측하는 과정을 거쳤다. RUL 임계값 설정, 이동평균필터 및 표준화를 통해 데이터 전처리를 수행하였고, 주성분 분석(Principal Component Analysis)과 k-NN(k-Nearest Neighbor)을 활용하여 잔여 유효 수명을 예측하였다. 최적의 성능을 도출하기 위해, 5겹 교차검증기법을 통해 최적의 주성분 개수 및 k-NN의 근접 데이터 개수를 결정하였다. 또한, 사전 예측의 유용성, 사후 예측의 부적합성을 고려한 스코어링 함수(Scoring Function)를 통해 예측 결과를 분석하였다. 마지막으로, 현재까지 제시되어온 뉴럴 네트워크 기반의 알고리즘과 예측 성능 비교 및 분석을 통해 k-NN 활용 모델의 유용성을 검증하였다.

Prediction of Welding Parameters for Pipeline Welding Using an Intelligent System

  • Kim, I.S.;Jeong, Y.J.;Lee, C.W.;Yarlagadda, P.
    • International Journal of Korean Welding Society
    • /
    • 제2권2호
    • /
    • pp.32-35
    • /
    • 2002
  • In this paper, an intelligent system to determine welding parameters for each pass and welding position in pipeline welding based on one database and FEM model, two BP neural network models and a C-NN model was developed and validated. The preliminary test of the system has indicated that the developed system could determine welding parameters fur pipeline welding quickly, from which good weldments can be produced without experienced welding personnel. Experiments using the predicted welding parameters from the developed system proved the feasibility of interface standards and intelligent control technology to increase productivity, improve quality, and reduce the cost of system integration.

  • PDF

STUDY ON APPLICATION OF NEURO-COMPUTER TO NONLINEAR FACTORS FOR TRAVEL OF AGRICULTURAL CRAWLER VEHICLES

  • Inaba, S.;Takase, A.;Inoue, E.;Yada, K.;Hashiguchi, K.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.II
    • /
    • pp.124-131
    • /
    • 2000
  • In this study, the NEURAL NETWORK (hereinafter referred to as NN) was applied to control of the nonlinear factors for turning movement of the crawler vehicle and experiment was carried out using a small model of crawler vehicle in order to inspect an application of NN. Furthermore, CHAOS NEURAL NETWORK (hereinafter referred to as CNN) was also applied to this control so as to compare with conventional NN. CNN is especially effective for plane in many variables with local minimum which conventional NN is apt to fall into, and it is relatively useful to nonlinear factors. Experiment of turning on the slope of crawler vehicle was performed in order to estimate an adaptability of nonlinear problems by NN and CNN. The inclination angles of the road surface which the vehicles travel on, were respectively 4deg, 8deg, 12deg. These field conditions were selected by the object for changing nonlinear magnitude in turning phenomenon of vehicle. Learning of NN and CNN was carried out by referring to positioning data obtained from measurement at every 15deg in turning. After learning, the sampling data at every 15deg were interpolated based on the constructed learning system of NN and CNN. Learning and simulation programs of NN and CNN were made by C language ("Association of research for algorithm of calculating machine (1992)"). As a result, conventional NN and CNN were available for interpolation of sampling data. Moreover, when nonlinear intensity is not so large under the field condition of small slope, interpolation performance of CNN was a little not so better than NN. However, when nonlinear intensity is large under the field condition of large slope, interpolation performance of CNN was relatively better than NN.

  • PDF

PREDICTION OF WELDING PARAMETERS FOR PIPELINE WELDING USING AN INTELLIGENT SYSTEM

  • Kim, Ill-Soo;Jeong, Young-Jae;Lee, Chang-Woo;Yarlagadda, Prasad K.D.V.
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.295-300
    • /
    • 2002
  • In this paper, an intelligent system to determine welding parameters for each pass and welding position in pipeline welding based on one database and FEM model, two BP neural network models and a C-NN model was developed and validated. The preliminary test of the system has indicated that the developed system could determine welding parameters for pipeline welding quickly, from which good weldments can be produced without experienced welding personnel. Experiments using the predicted welding parameters from the developed system proved the feasibility of interface standards and intelligent control technology to increase productivity, improve quality, and reduce the cost of system integration.

  • PDF

신경망 모델로 구성한 동해 울릉분지 표층 이산화탄소 분압과 변동성 (Sea Surface pCO2 and Its Variability in the Ulleung Basin, East Sea Constrained by a Neural Network Model)

  • 박소예나;이동섭;조영헌
    • 한국해양학회지:바다
    • /
    • 제21권1호
    • /
    • pp.1-10
    • /
    • 2016
  • 동해 표층 해수에서 측정한 이산화탄소 분압($pCO_2$)에 대해 기 확보된 자료는 해양-대기간 $CO_2$ 교환율을 정량화하고자 통계 기법을 적용하기에는 부족한 편이다. 이를 보완하기 위해 위성자료를 이용하여 관측이 이루어지지 않은 해역의 $pCO_2$를 신경망모델을 이용하여 채워 넣는(mapping) 연구를 시도하였다. 본 연구는 동해에서 현장관측자료가 가장 많이 축적된 울릉분지를 대상으로 2003년부터 2012년까지의 표층$pCO_2$자료와, Aqua 위성의 MODIS 센서로 관측한 해표면 온도(SST)와 엽록소(chlorophyll) 자료, 경위도 자료로 신경망모델을 구축하여 $pCO_2$ 분포도 작성과 변동성을 추정하고자 하였다. 신경망모델의 학습은 $pCO_2$ 관측자료와 모델결과값의 상관도가 95% 이상을 달성하도록 하였다. 모델 결과의 평균제곱근오차(RMSE)는 $19.2{\mu}atm$으로 관측자료의 변동 크기와 비교해서 훨씬 작은 수준이었다. SST와 chlorophyll에 연관된 $pCO_2$의 변동성을 살펴보면 chlorophyll 보다는 SST에 대해 더욱 강한 음의 상관 관계를 보였다. 모델이 출력한 $pCO_2$의 변동성은 SST가 내려감에 따라 커지는 경향을 보였다. $15^{\circ}C$ 이하에서는 $pCO_2$ 변동성에 대한 SST와 chlorophyll의 기여도가 뚜렷하게 나타났다. 반면 SST가 $15^{\circ}C$ 이상일 경우에는 $pCO_2$ 변동성은 SST와 chlorophyll의 변화에 대해 그리 민감하게 반응하지 않았다. 신경망모델 출력값으로 추정한 2003-2014년 사이의 울릉분지 표층수의 연평균 $pCO_2$ 증가율은 $0.8{\mu}atm$이었다. 신경망 모델이 울릉분지의 $pCO_2$에 대해 이전 연구보다 해상력과 오차가 향상된 $pCO_2$ 채워넣기를 가능케 해 준 점에 비추어 볼 때 국제정세에 따라 전역 관측이 수월하지 않은 동해의 탄소순환을 이해하는데 유용한 도구로 쓰일 수 있을 것으로 판단된다.

Off-line PD Model Classification of Traction Motor Stator Coil Using BP

  • Park Seong-Hee;Jang Dong-Uk;Kang Seong-Hwa;Lim Kee-Joe
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권6호
    • /
    • pp.223-227
    • /
    • 2005
  • Insulation failure of traction motor stator coil depends on the continuous stress imposed on it and knowing its insulation condition is an issue of significance for proper safety operation. In this paper, application of the NN (Neural Network) as a scheme of the off-line PD (partial discharge) diagnosis method that occurs at the stator coil of a traction motor was studied. For PD data acquisition, three defective models were made; internal void discharge model, slot discharge model and surface discharge model. PD data for recognition were acquired from a PD detector. Statistical distributions and parameters were calculated to perform recognition between model discharge sources. These statistical distribution parameters are applied to classify PD sources by the NN with a good recognition rate on the discharge sources.