• Title/Summary/Keyword: C-H activation

Search Result 1,318, Processing Time 0.035 seconds

Anti-Inflammatory Activity of Ethanol Extracts from Hizikia fusiformis Fermented with Lactic Acid Bacteria in LPS-Stimulated RAW264.7 Macrophages (유산균 종류에 따른 발효톳 추출물의 항염증 활성)

  • Kwon, Myeong Sook;Mun, Ok-Ju;Bae, Min Joo;Lee, Seul-Gi;Kim, Mihyang;Lee, Sang-Hyeon;Yu, Ki Hwan;Kim, Yuck Yong;Kong, Chang-Suk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.10
    • /
    • pp.1450-1457
    • /
    • 2015
  • The anti-inflammatory effect of ethanol extracts from Hizikia fusiformis fermented with and without lactic acid bacteria was compared in lipopolysaccharide (LPS)-stimulated RAW 264.7 mouse macrophages. The fermentation was done using Weissella sp. SH-1 and Lactobacillus casei in a mixture of glucose and lactate source at $30^{\circ}C$ for 30 days. As a result, we confirmed that the fermentation of H. fusiformis with lactic acid bacteria inhibited LPS-stimulated nitric oxide (NO) production and the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, interleukin (IL)-6, tumor necrosis factor ${\alpha}$, and IL-$1{\beta}$ as important inflammatory factors. During a comparison analysis, we found that L. casei fermented groups significantly suppressed NO production by regulating iNOS and COX-2 expression. Also, the effective suppression of pro-inflammatory cytokine and LPS-induced activation of mitogen- activated protein kinase indicated that the fermentation using Weissella sp. SH-1 and L. casei may provide an increment towards the extraction of active components, which are effective anti-inflammatory agents.

Immune-Enhancing Effects of Polysaccharides Isolated from Ascidian (Halocynthia roretzi) Tunic (우렁쉥이(Halocynthia roretzi) 껍질로부터 분리된 다당류의 면역증강 효과)

  • Lee Dae-Hoon;Hong, Joo-Heon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.5
    • /
    • pp.673-680
    • /
    • 2015
  • In this study, the immune-enhancing effects of purified polysaccharides from ascidian (Halocynthia roretzi) tunic were investigated. Crude polysaccharides (AP) were isolated by enzyme extraction (neutrase, $60^{\circ}C$, 15h), ethanol precipitation, and lyophilization. In addition, crude polysaccharides were further fractionated into unabsorbed fractions (APF-I, fraction No. 11~17) and absorbed fractions (APF-II, fraction No. 22~37) by DEAE-sepharose CL-6B column chromatography in order to isolate immune regulating polysaccharide. The major constituents in APF-I and APF-II were total sugar (66.62% and 27.03%), uronic acid (47.53% and 15.87%), hexosamine (16.62% and 46.79%), and protein (2.43% and 4.94%), respectively. APF-I increased production of nitric oxide (NO) and cytokines, such as tumor necrosis factor-alpha (TNF-${\alpha}$) and interleukin (IL)-6 in a dose-dependent manner. The mRNA expression levels of inducible NO synthetase, cyclooxygenase-2, TNF-${\alpha}$, and IL-6 were markedly increased as determined by polymerase chain reaction analysis. The above data led us to conclude that macrophage activation of purified polysaccharides was higher than that of crude polysaccharides. The polysaccharides isolated from ascidian tunic investigated herein are useful as natural immune enhancing agents.

Allopurinol Decreases Liver Damage Induced by Dermal Scald Burn Injury (피부 화상으로 유도된 간 손상에서 Allopurinol의 효과)

  • Cho, Hyun-Gug;Yoon, Chong-Guk;Park, Won-Hark
    • Applied Microscopy
    • /
    • v.31 no.1
    • /
    • pp.37-47
    • /
    • 2001
  • In order to investigate a pathogenesis of liver damage induced by skin burn, thermal injury was induced by scald burn on entirely dorsal surface in rats (total burn surface area $20\sim25\%$) except for inhalated injury. At 5 and 24 h after scald burn, biochemical assay and morphological changes in serum and liver tissue were examined. Skin burn increased liver weight (% of body weight, p<0.05) and the activity of serum aniline amino-transferase (ALT, p<0.05), in addition, the activity of xanthine oxidase (XO), an enzyme of oxygen free radical generating system, was elevated (p<0.01) in serum, but not in skin and in liver. Postburn treatment of allopurinol intraperitoneally decreased liver weight, serum ALT activity and serum XO activity. Scald burn induced ultrastructurally swelling of endoplasmic reticulum, ribosome detachment, accumulation of lipid, dilatation of bile canaliculi and intercellular space, neutrophil infiltration, activation of Kupffer's cells and degeneration of hepatocytic microvilli. Futhermore , thermal injury decreased not only the protein concentration in plasma but also the number of intravascular leukocytes, that indicates induction of edema formation with protein exudation and inflammation by neutrophil infiltration into the internal organs. However allopurinol injection after burn inhibited post burn ultrastructural changes. These data suggest that acute dermal scald burn injury leads to liver damage, that is related to elevation of xanthine oxidase activity in serum. Xanthine oxidase may be a key role in the pathogenesis of liver damage induced by skin burn.

  • PDF

Induction of Nrf2/ARE-mediated cytoprotective genes by red ginseng oil through ASK1-MKK4/7-JNK and p38 MAPK signaling pathways in HepG2 cells

  • Bak, Min Ji;Truong, Van-Long;Ko, Se-Yeon;Nguyen, Xuan Ngan Giang;Jun, Mira;Hong, Soon-Gi;Lee, Jong-Won;Jeong, Woo-Sik
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.423-430
    • /
    • 2016
  • Background: The induction of cellular defensive genes such as phase II detoxifying and antioxidant enzymes is a highly effective strategy for protection against carcinogenesis as well as slowing cancer development. Transcription factor Nrf2 (nuclear factor E2-related factor 2) is responsible for activation of phase II enzymes induced by natural chemopreventive compounds. Methods: Red ginseng oil (RGO) was extracted using a supercritical $CO_2$ extraction system and chemical profile of RGO was investigated by GC/MS. Effects of RGO on regulation of the Nrf2/antioxidant response element (ARE) pathway were determined by ARE-luciferase assay, western blotting, and confocal microscopy. Results: The predominant components of RGO were 9,12-octadecadienoic acid (31.48%), bicyclo[10.1.0] tridec-1-ene (22.54%), and 22,23-dihydrostigmasterol (16.90%). RGO treatment significantly increased nuclear translocation of Nrf2 as well as ARE reporter gene activity, leading to upregulation of heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1. Phosphorylation of the upstream kinases such as apoptosis signal-regulating kinase (ASK)1, mitogen-activated protein kinase (MAPK) kinase (MKK)4/7, c-Jun N-terminal kinase (JNK), and p38 MAPK were enhanced by treatment with RGO. In addition, RGO-mediated Nrf2 expression and nuclear translocation was attenuated by JNK inhibitor SP600125 and p38 MAPK inhibitor SB202190. Conclusion: RGO could be used as a potential chemopreventive agent, possibly by induction of Nrf2/ARE-mediated phase II enzymes via ASK1-MKK4/7-JNK and p38 MAPK signaling pathways.

Enhancement of Tumor Radioresponse by Combined Chemotherapy in Murine Mepatocarcinorna (마우스 간암에서 항암제-방사선 복합요법을 이용한 치료 효과 향상)

  • Seong, Jin-Sil;Kim, Sung-Hee;Suh, Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.18 no.4
    • /
    • pp.329-336
    • /
    • 2000
  • Backgrounds : The purpose of this study was to identify drugs that can enhance radioresponse of murine fepatocarcinorna. Methods : CSH/HeJ mice bearing 8 mm tumors of murine fepatocarcinorna, HCa-1, were treated with 25 Gy radiation and one of the following drugs: 5-Fu, 150 mghg; adriamycin, 8 mg/kg; cisplatin, 6 mg/kg; paclitaxel, 40 mg/kg; and gemcitabine, 50 mg/kg. Tumor response to the treatment was determined by tumor growth delay assay and by enhancement factor. Apoptotic level was assessed in tissue sections. Expression of regulating molecules was analyzed by western blotting for p53, Bcl-2, Bax, Bcl-XL, Bcl-XS, and p21$^{WAF1/CIP1}$. Results :Among the drugs tested, only gemcitabine enhanced the antitumor effect of radiation, with enhancement factor of 1.6. Induction of apoptosis by a combination of gemcitabine and radiation was shown as only additive level. In analysis of radiation-induced expression of regulating molecules, the most significant change by combining gemcitabine was activation of p21$^{WAF1/CIP1}$ Conclusion :Gemcitabine is the first drug showing an enhancement of radioresponse in murine hepatocarcinoma, when combined with radiation. The key element of enhancement is thought to be p21$^{WAF1/CIP1}$.

  • PDF

Parthenogenetic Mouse Embryonic Stem Cells have Similar Characteristics to In Vitro Fertilization mES Cells (체외수정 유래 생쥐 배아줄기세포와 유사한 특성을 보유한 단위발생 유래 생쥐 배아줄기세포)

  • Park, Se-Pill;Kim, Eun-Young;Lee, Keum-Si;Lee, Young-Jae;Shin, Hyun-Ah;Min, Hyun-Jung;Lee, Hoon-Taek;Chung, Kil-Saeng;Lim, Jin-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.29 no.2
    • /
    • pp.129-138
    • /
    • 2002
  • Objective: This study was to compare the characteristics between parthenogenetic mES (P-mES) cells and in vitro fertilization mES cells. Materials and Methods: Mouse oocytes were recovered from superovulated 4 wks hybrid F1 (C57BL/6xCBA/N) female mice. For parthenogenetic activation, oocytes were treated with 7% ethanol for 5 min and $5{\mu}g$/ml cytochalasin-B for 4 h. For IVF, oocytes were inseminated with epididymal sperm of hybrid F1 male mice ($1{times}10^6/ml$). IVF and parthenogenetic embryos were cultured in M16 medium for 4 days. Cell number count of blastocysts in those two groups was taken by differential labelling using propidium iodide (red) and bisbenzimide (blue). To establish ES cells, b1astocysts in IVF and parthenogenetic groups were treated by immunosurgery and recovered inner cell mass (ICM) cells were cultured in LIF added ES culture medium. To identify ES cells, the surface markers alkaline phosphatase, SSEA-1, 3,4 and Oct4 staining were examined in rep1ated ICM colonies. Chromosome numbers in P-mES and mES were checked. Also, in vitro differentiation potential of P-mES and mES was examined. Results: Although the cleavage rate (${\geq}$2-cell) was not different between IVF (76.3%) and parthenogenetic group (67.0%), in vitro development rate was significantly low in parthenogenetic group (24.0%) than IVF group (68.4%) (p<0.05). Cell number count of ICM and total cell in parthenogenetic b1astocysts ($9.6{\pm}3.1,\;35.1{\pm}5.2$) were signficantly lower than those of IVF blastocysts ($19.5{\pm}4.7,\;63.2{\pm}13.0$) (p<0.05). Through the serial treatment procedure such as immunosurgery, plating of ICM and colony formation, two ICM colonies in IVF group (mES, 10.0%) and three ICM colonies (P-mES, 42.9%) in parthenogenetic group were able to culture for extended duration (25 and 20 passages, respectively). Using surface markers, alkaline phosphatase, SSEA-l and Oct4 in P-mES and mES colony were positively stained. The number of chromosome was normal in ES colony from two groups. Also, in vitro neural and cardiac cell differentiation derived from mES or P-mES cells was confirmed. Conclusion: This study suggested that P-mES cells can be successfully established and that those cell lines have similar characteristics to mES cells.

20S-Protopanaxadiol, an aglycosylated ginsenoside metabolite, induces hepatic stellate cell apoptosis through liver kinase B1-AMP-activated protein kinase activation

  • Park, Sang Mi;Jung, Eun Hye;Kim, Jae Kwang;Jegal, Kyung Hwan;Park, Chung A;Cho, Il Je;Kim, Sang Chan
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.392-402
    • /
    • 2017
  • Background: Previously, we reported that Korean Red Ginseng inhibited liver fibrosis in mice and reduced the expressions of fibrogenic genes in hepatic stellate cells (HSCs). The present study was undertaken to identify the major ginsenoside responsible for reducing the numbers of HSCs and the underlying mechanism involved. Methods: Using LX-2 cells (a human immortalized HSC line) and primary activated HSCs, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) assays were conducted to examine the cytotoxic effects of ginsenosides. $H_2O_2$ productions, glutathione contents, lactate dehydrogenase activities, mitochondrial membrane permeabilities, apoptotic cell subpopulations, caspase-3/-7 activities, transferase dUTP nick end labeling (TUNEL) staining, and immunoblot analysis were performed to elucidate the molecular mechanism responsible for ginsenoside-mediated cytotoxicity. Involvement of the AMP-activated protein kinase (AMPK)-related signaling pathway was examined using a chemical inhibitor and small interfering RNA (siRNA) transfection. Results and conclusion: Of the 11 ginsenosides tested, 20S-protopanaxadiol (PPD) showed the most potent cytotoxic activity in both LX-2 cells and primary activated HSCs. Oxidative stress-mediated apoptosis induced by 20S-PPD was blocked by N-acetyl-$\text\tiny L$-cysteine pretreatment. In addition, 20S-PPD concentration-dependently increased the phosphorylation of AMPK, and compound C prevented 20S-PPD-induced cytotoxicity and mitochondrial dysfunction. Moreover, 20S-PPD increased the phosphorylation of liver kinase B1 (LKB1), an upstream kinase of AMPK. Likewise, transfection of LX-2 cells with LKB1 siRNA reduced the cytotoxic effect of 20S-PPD. Thus, 20S-PPD appears to induce HSC apoptosis by activating LKB1-AMPK and to be a therapeutic candidate for the prevention or treatment of liver fibrosis.

DAMGO, a ${\mu}-Opioid$ Agonist and Cholecystokinin-Octapeptide Have Dual Modulatory Effects on Capsaicin-Activated Current in Rat Dorsal Root Ganglion Neurons

  • Eun, Su-Yong;Kim, Ji-Mok;Lee, Ji-Hye;Jung, Sung-Jun;Park, Joo-Min;Park, Yun-Kyung;Kim, Dong-Kwan;Kim, Sang-Jeong;Kwak, Ji-Yeon;Kim, Jun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.71-78
    • /
    • 2001
  • Capsaicin, a pungent ingredient of hot pepper, elicits an intense burning pain when applied cutaneously and intradermally. Activation of capsaicin-gated channel in C-type dorsal root ganglion (DRG) neurons produces nonselective cationic currents. Although electrophysiological and biochemical properties of capsaicin-activated current $(I_{CAP})$ were studied, the regulatory mechanism and intracellular signaling pathway are still unclear. In the present study, we investigated the modulations of $I_{CAP}$ by DAMGO $({\mu}-opioid\;agonist)$ and cholecystokinin octapeptide (CCK-8). In 18 out of 86 cells, the amplitude of $I_{CAP}$ was significantly increased by DAMGO and completely reversed after washout, while $I_{CAP}$ was decreased by DAMGO in 25 cells. In 43 cells, DAMGO had no effect on $I_{CAP}$. Mean action potential duration was significantly different between 'increased-by-DAMGO' group and 'decreased-by-DAMGO' group. Mean amplitudes of $I_H$ were not significantly different between both groups. CCK-8 reversibly enhanced the amplitude of $I_{CAP}$ (5/13). DAMGO also increased $I_{CAP}$ amplitude significantly in the same cells. The amplitude of $I_{CAP}$ was increased in additive manner by combined applications of DAMGO and CCK-8 in these cells. These results suggest that DAMGO and CCK-8 can either increase or decrease $I_{CAP}$ presumably depending on the subtypes of DRG cells and classified by electrophysiological properties.

  • PDF

Effect of Zedoariae rhizoma on Bronchial Inflammation and Allergic Asthma in Mice

  • Ahn, Jong-Chan;Ban, Chang-Gyu;Park, Won-Hwan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1636-1648
    • /
    • 2006
  • There are detailed descriptions of the clinical experiences and prescriptions of asthma in traditional Korean medicine. Zedoariae rhizoma is one of the Korean herbal medicines used to treat bronchial asthma and allergic rhinitis for centuries. However, the therapeutic mechanisms of this medication are still far from clear, In this study, a house-dust-mite (Dermatophagoides pteronyssinus [Der p])-sensitized murine model of asthma was used to evaluate the immunomodulatory effect of Zedoariae rhizoma on the allergen-induced airway inflammation in asthma. Three different protocols were designed to evaluate the treatment and/or long-term prophylacitic effect of Zedoariae rhizoma in Der p-sensitized mice. Cellular infiltration and T-cell subsets in the bronchoalveolar lavage fluid (BALF)of allergen-challenged mice were analyzed. Intrapulmonary lymphocytes were also isolated to evaluate their response to allergen stimulation. When Zedoariae rhizoma was administered to the sensitized mice before AC (groups A and C), it suppressed airway inflammation by decreasing the number of total cells and eosinophil infiltration in the BALF, and downregulated the allergen- or mitogen-induced intrapulmonary lymphocyte response of sensitized mice as compared to those of controls. This immunomodulatory effect of Zedoariae rhizoma may be exerted through the regulation of T-cell subsets by elevation or activation of the CD8+ and double-negative T-cell population in the lung. However, the administration of Zedoariae rhizoma to sensitized mice 24 h after AC (group B) did not have the same inhibitory effect on the airway inflammation as Zedoariae rhizoma given before AC. Thus, the administration of Zedoariae rhizoma before AC has the immunomodulatory effect of reducing bronchial inflammation in the allergen-sensitized mice. On the other hand, to determine the potentiality of prophylactic and/or therapeutic approaches using a traditional herbal medicine, Zedoariae rhizoma, for the control of allergic disease, we examined the effects of oral administration of Zedoariae rhizoma on a murine model of asthma allergic responses. When oral administration of Zedoariae rhizoma was begun at the induction phase immediately after OVA sensitization, eosinophilia and Th2-type cytokine production in the airway were reduced in OVA-sensitized mice following OVA inhalation. These results suggest that the oral administration of Zedoariae rhizoma dichotomously modulates allergic inflammation in murine model for asthma, thus offering a different approach for the treatment of allergic disorders.

Time-based Expression Networks of Genes Related to Cold Stress in Brassica rapa ssp. pekinensis (배추의 저온 스트레스 처리 시간대별 발현 유전자 네트워크 분석)

  • Lee, Gi-Ho;Yu, Jae-Gyeong;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.114-123
    • /
    • 2015
  • Plants can respond and adapt to cold stress through regulation of gene expression in various biochemical and physiological processes. Cold stress triggers decreased rates of metabolism, modification of cell walls, and loss of membrane function. Hence, this study was conducted to construct coexpression networks for time-based expression pattern analysis of genes related to cold stress in Chinese cabbage (Brassica rapa ssp. pekinensis). B. rapa cold stress networks were constructed with 2,030 nodes, 20,235 edges, and 34 connected components. The analysis suggests that similar genes responding to cold stress may also regulate development of Chinese cabbage. Using this network model, it is surmised that cold tolerance is strongly related to activation of chitinase antifreeze proteins by WRKY transcription factors and salicylic acid signaling, and to regulation of stomatal movement and starch metabolic processes for systemic acquired resistance in Chinese cabbage. Moreover, within 48 h, cold stress triggered transition from vegetative to reproductive phase and meristematic phase transition. In this study, we demonstrated that this network model could be used to precisely predict the functions of cold resistance genes in Chinese cabbage.