• 제목/요약/키워드: C-C bond activation

검색결과 79건 처리시간 0.027초

Subunit 간의 disulfide 결합 형성에 의한 Mycobacterium smegmatis DevS histidine kinase의 불활성화 (Inactivation of the DevS Histidine Kinase of Mycobacterium smegmatis by the Formation of the Intersubunit Disulfide Bond)

  • 이진목;박광진;김민주;고인정;오정일
    • 생명과학회지
    • /
    • 제20권6호
    • /
    • pp.853-860
    • /
    • 2010
  • DevSR two-component system은 Mycobacterium smegmatis의 redox sensing에 관련된 주요한 regulatory system이다. DevSR system은 DevS histidine kinase와 DevR response regulator로 구성되어 있다. 저산소 조건에서 DevS histidine kinase는 활성화되어 DevR response regulator를 인산화 시키고, 인산화된 DevR response regulator는 DevR regulon의 transcriptional activator로 작용한다. DevS의 kinase activity는 DevS의 N-terminal에 위치한 GAF domain에 존재하는 heme의 ligand-binding state에 의해 결정된다. 본 연구에서는 C-terminal kinase domain의 redox-responsive cysteine (C547)이 DevS kinase activity의 redox-dependent control과 연관이 있음을 밝혔다. 산소가 존재할 때, C547 residue 사이의 disulfide bond의 형성은 DevS kinase activity를 불활성화 시킨다. $\beta$-mercaptoethanol과 dithiothreitol과 같은 환원제를 이용하여 산화된 DevS를 환원시켰을 때, DevS kinase activity가 복원된 것이 관찰되었다. 또한, C547을 alanine으로 치환했을 때, M. smegmatis의 DevS의 sensory 기능을 부분적으로 손상되는 것이 complementation 실험을 통해 in vivo 상에서 증명되었다.

Structural Characterization of the (TEX)$Sr_2Co_0.5Nb(Ta)_0.5O_4$(/TEX) and (TEX)$Sr_3CoNb(Ta)O_7$(/TEX)

  • 조한상;;류광현;유철현
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권7호
    • /
    • pp.679-684
    • /
    • 2000
  • The Sr2Co0.5Nb(Ta)0.5O4 and Sr3CoNb(Ta)O7 compounds, both with Ruddlesden-Popper structures, have been synthesized by the ceramic method at $1150^{\circ}C$ under atmospheric pressure. The crystallographic structure of the compounds was assigned to the tetr agonal system with space group 14/mmm by X-ray diffraction(XRD) Rietveld refinement. The reduced lattice volume and lattice parameters increased as the Ta with 5d substitutes for the Nb with 4d in the compounds. The Co/Nb(Ta)O bond length has been determined by X-ray absorption spectroscopic(EXAFS/XANES) analysis and the XRD refinement. The CoO6,octahedra were tetragonally distorted by elongation of Co-O bond along the c-axis. The magnetic measurement shows the compounds Sr2Co0.5Nb(Ta)0.5O4 and Sr3CoNb(Ta)O7 have paramagnetic properties and the Co ions with intermediate spin sates between high and low spins in D4h symmetry. All the compounds showed semiconducting behavior whose electrical conductivity increased with temperature up to 1000 K. The electrical conductiviy increased and the activation energy for the conduction decreased as the number of perovskite layers increased in the compounds with chemical formula An+1BnO3n+1.

Determination of Reactivity by MO Theory (Part 50). MO Studies on the Gas Phase Pyrolysis of Esters

  • Lee, Ik-Choon;Park, Young-Soo;Lee, Bon-Su
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권3호
    • /
    • pp.193-196
    • /
    • 1987
  • The gas phase pyrolyses of eight esters have been studied by MNDO-MO method. In the ethylformate pyrolysis, ${\alpha}$-methylation had a steric releasing effect whereas ${\beta}$-methylation had a steric crowding in the transition state; the latter, however, is over-compensated by a greater electronic repulsion resulting in a net steric releasing effect. Considerations of formal charges and geometrical changes involved in the activation led us to propose a pyrolysis mechanism in which a preequilibrium of acidic proton transfer is followed by the rate-limiting bond polarization of $C_{\alpha}$-O bond in a cyclic transition state.

Analysis of Cis- Trans Photoisomerization Mechanism of Rhodopsin Based on the Tertiary Structure of Rhodopsin

  • Yamada, Atsushi;Yamato, Takahisa;Kakitani, Toshiaki;Yamamoto, Shigeyoshi
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.51-54
    • /
    • 2002
  • We propose a novel mechanism (Twist Sharing Mechanism) for the cis-trans photoisomerization of rhodopsin, based on the molecular dynamics (MD) simulation study. New things devised in our simulations are (1) the adoption of Mt. Fuji potentials in the excited state for twisting of the three bonds C9=C10, C11=C12 and C13=14 which are modeled using the detailed ab initio quantum chemical calculations and (2) to use the rhodopsin structure which was resolved recently by the X-ray crystallographic study. As a result, we found the followings: Due to the intramolecular steric hindrance between 20-methyl and 10-H in the retinal chromophore, the C12-C13 and C10-C11 bonds are considerably twisted counterclockwise in rhodopsin, allowing only counterclockwise rotation of the C11 =C12 in the excited state. The movement of 19-methyl in rhodopsin is blocked by the surrounding three amino acids, Thr 118, Met 207 and Tyr 268, prohibiting the rotation of C9=C10. As a result only all-trans form of the chromophore is obtainable as a photoproduct. At the 90$^{\circ}$ twisting of C11=C12 in the course of photoisomerization, twisting energies of the other bonds amount to about 20 kcal/mol. If the transition state for the thermal isomerization is assumed to be similar to this structure, the activation energy for the thermal isomerization around C11=C12'in rhodopsin is elevated by about 20 kcal/mol and the thermal isomerization rate is decelerated by 10$\^$-14/ times than that of the retinal chromophore in solution, protecting photosignal from the thermal noise.

  • PDF

지중저장 이산화탄소의 누출이 천부환경에서 방연석의 용해 과정에 미치는 영향 (The Effects of CO2 Released from Deep Geological Formations on the Dissolution Process of Galena in Shallow Subsurface Environments)

  • 남지은;왕수균
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권1호
    • /
    • pp.19-27
    • /
    • 2015
  • If $CO_2$ stored for geological sequestration escapes from deep formations and is introduced to shallow aquifers, it dissolves into groundwater, creates acidic environments, and enhance mineral dissolution from rocks and soils. Among these minerals, dissolution and spread of hazardous trace metals can cause environmental problems with detrimental impacts on groundwater quality. This study aims to investigate geochemical effects of $CO_2$ in groundwater on dissolution of galena, the main mineral controlling the mobility of lead. A series of batch experiments are performed with granulated galena in $CO_2$ solutions under various experimental conditions for $CO_2$ concentration and reaction temperature. Results show that dissolution of galena is significantly enhanced under acidic environments so that both of equilibrium concentrations and dissolution rates of lead increase. For thermodynamic analysis on galena dissolution, the apparent rate constants and the activation energy for galena dissolution are calculated by applying rate law to experimental results. The apparent rate constants are $6.71{\times}10^{-8}mol/l{\cdot}sec$ at $15^{\circ}C$, $1.77{\times}10^{-7}mol/l{\cdot}sec$ at $25^{\circ}C$, $3.97{\times}10^{-7}mol/l{\cdot}sec$ at $35^{\circ}C$ and the activation energy is 63.68 kJ/mol. The galena dissolution is suggested to be a chemically controlled surface reaction, and the rate determining step is the dissociation of Pb-S bond of surface complex.

Neutron Activation Analysis를 이용한 Composite Resin의 변연누출 측정에 관한 실험적 연구 (AN EXPERIMENTAL STUDY ON THE MEASUREMENT OF MARGINAL LEAKAGE USING A NEUTRON ACTIVATION ANALYSIS)

  • 김미자;이명종
    • Restorative Dentistry and Endodontics
    • /
    • 제13권1호
    • /
    • pp.185-190
    • /
    • 1988
  • The study was designed to establish quantitative method for assessing the marginal leakage of dental restorations. 18 Class V cavities with $45^{\circ}$ bevel joint were prepared and replicas of these teeth were made with polyethylene wax. and classified with three groups. First group was filled with Scotch bond and silux. Second group was filled with glass ionomer cement:scotchbond/silux. Third group was filled with Dentin-Adhesit/Heliosit. After finishing, all specimens were subjected manually to 100 thermal cycles at $0^{\circ}C$ and $100^{\circ}C$ Samarium nitrate solution, irradiated with flux of $6{\times}12^{12}$ neutrons/$cm^2$/sec for 11 hours, woled for 200 hours, counted with the HpGe detector and the tracer uptake was determined by comparison with a standard of samarium ($10{\mu}g$). The following results were obtained. 1) The group filled with glass ionomer cement base showed least marginal leakage. 2) The group filled with Dentin-Adhesit/Heliosit showed less marginal leakage than the group filled with scotchbond/silux.

  • PDF

Mechanistic Study of Half-titanocene-based Reductive Pinacol Coupling Reaction

  • Kim, Young-Jo;Do, Young-Kyu;Park, Sung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권11호
    • /
    • pp.3973-3978
    • /
    • 2011
  • The reductive pinacol coupling reaction of aldehydes or ketones creating a new C-C bond has been a major tool to produce 1,2-diol compounds. The reaction mechanism is known to be composed of sequential three steps (activation, coupling, and dissociation). In this work, we studied the dissociation step of half-titanocene-based catalytic systems. Cp and $Cp^*$ derivatives of the pinacolato-bridged dinuclear complex were synthesized and evaluated as possible models for intermediates from the coupling step. We monitored $^1H$-NMR spectra of the reaction between the metalla-pinacol intermediates and $D_2O$. New reaction routes of the dissociation step including oxo- and pinacolato-dibridged dinuclear complexes and oxo-bridged multinuclear complexes have been suggested.

Deactivation kinetics of C. rugosa lipase

  • 손현수;이준식
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 1986년도 추계학술대회
    • /
    • pp.523.1-523
    • /
    • 1986
  • To extend the spectrum of enzyme utilization in the organic solvent system, C. rugosal lipase was selected as a model enzyme because its substrate is soluble to organic solvent. One of the serious disadvantages in this system was the deactivation of the lipase. The pattern of lipase deactivation was the biphasic model. The activation energies for the deactivation were 14.05${\times}$10$^4$ KJ/Kg mole in the first phase and 3.59 ${\times}$ 10$^4$ KJ/mole in the second phase. The several factors were studied for their influences on the pattern of deactivation. Iso-octane as organic solvent influenced more on the first phase than the second phase. Urea as the reagent affecting boty hydrophobic interaction and hydrogen bond of enzyme also influencea more on the first phase. And the optimum pH for the activity was not correlated to that of the stability.

  • PDF

The Measurement of Tranfer Enthalpy in Mixed Solvent (Part 2) Solvent Effects on Nucleophilic Substitution Reactions of Ethyl and 2-Phenylethyl Benzenesulfonates

  • 허철;이해황;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권1호
    • /
    • pp.53-58
    • /
    • 1995
  • Heats of solution of aniline (AN), benzylamine (BA), ethyl-(EBS) and 2-phenylethyl benzenesulfonates (PEB) are calorimetrically measured in acetonitrile-methanol mixtures at 25.0 $^{\circ}C$. The activation parameters, ${\Delta}H^{\neq}$, ${\Delta}S^{\neq}$ and ${\Delta}G^{\neq}$, are determined for the reactions of EBS and PEB with AN and BA using the kinetic data at three temperatures. Calorimetric transfer enthalpies of initial state, ${\delta}H_t^{0{\rightarrow}x})$(IS), and kinetically derived activation enthalpies, ${\delta}\;{\Delta}H^{\neq}$, in the MeCN-MeOH mixtures are combined to determine the transfer enthalpies of transition state, ${\delta}H_t^{0{\rightarrow}x})$(TS); ${\delta}H_t^{0{\rightarrow}x})$(IS) = ${\delta}{\Delta}H^{\neq}\;+\;{\delta}H_t^{0{\rightarrow}x}$(IS) The preferential solvation of anionic charge in the TS predicts a loose TS with a greater degree of bond cleavage for the reactions of PEB than for EBS, and also for the reactions with BA compared to the reactions with AN.

Recent advances of aromatic C-F bond borylation and its application to positron emission tomography

  • Song, Dalnim;Lee, Sanghee;Lee, Byung Chul;Kim, Sang Eun;Lee, Eunsung
    • 대한방사성의약품학회지
    • /
    • 제1권2호
    • /
    • pp.80-87
    • /
    • 2015
  • Carbon-fluorine (C-F) bonds have been found ubiquitously in pharmaceuticals, radiopharmaceuticals, agrochemicals, and material science due to their unique properties such as thermal and oxidative stability and lipophilicity to improve bioavailability. For the past five years, there have been significant advances in F-18 fluorination of aromatic complex molecules combined with the development of late-stage fluorination reactions. More recently, direct incorporation of F-18 to fluorinated aromatic molecules via borylation of C-F bonds has been developed by Niwa and Hosoya. In this minireview, we will discuss the progress of C-F bondborylation of fluorinated arenes utilizing transition metal catalysts and the impact on the development of F-18 radiotracers for positron emission tomography (PET).