• 제목/요약/키워드: C protein-coupled receptor

검색결과 91건 처리시간 0.023초

흰쥐 해마에서 Acetylcholine 유리에 관여하는 Adenosine Receptor의 Post-Receptor 기전에 관한 연구 (A Study on the Post-Receptor Mechanism of Adenosine Receptor on Acetylcholine Release in the Rat Hippocampus)

  • 최봉규;오재희
    • 대한약리학회지
    • /
    • 제30권3호
    • /
    • pp.263-272
    • /
    • 1994
  • 흰쥐 해마(hippocampus)에서 acetylcholine (ACh) 유리에 미치는 $A_{1}-adenosine$ 수용체의 post-receptor 기전에 관한 지견을 얻고자 하여 $^3H-choline$으로 평형시킨 해마 slice를 사용하여 $^3H-ACh$ 유리에 미치는 여러가지 약물들의 영향을 관찰하였다. Adenosine $(0.3{\sim}300\;{\mu}M)$은 전기자극(3Hz, 2 ms, 5 $VCm^{-1}$, 구형파)에 의한 ACh 유리를 용량 의존적으로 감소 시켰으며, 이러한 효과는 $A_1-adenosine$ 수용체의 선택적 차단제인 8-cyclopentyl-1, 3-dipropylxanthine $(2\;{\mu}M)$에 의해 차단됨을 볼 수 있었다. G-단백 억제제인 N-ethylmaleimide (NEM, 10과 $30\;{\mu}M$)는 그 자체에 의하여 자극유발성 ACh 유리를 증가시켰으며, adenosine의 효과는 NEM 전처리에 의하여 완전히 소실되었다. Protein kinase C 활성화제인 $4{\beta}-phorbol$ 12, 13-dibutyrate (PDB, $1{\sim}10\;{\mu}M$)는 ACh 유리 증가를 일으켰으며 억제제인 polymyxin B (PMB, $0.03{\sim}1\;mg$)는 감소를 일으켰으나, adenosine에 의한 ACh 유리 감소효과는 PDB 및 PMB에 의해 영향을 받지 않았다. $Ca^{++}$-통로 차단제인 nifedipine $(1\;{\mu}M)$은 adenosine의 효과를 길항함을 볼 수 있었으나 $K{^+}$-통로 차단제인 glibenclamide는 adenosine의 효과에 영향을 미치지 못하였다. 8-Bromo-cAMP (100과 $300{\mu}M$) 그 자체로는 ACh 유리에 별다른 영향을 미치치 못하였으나 $300\;{\mu}M$ 8-bromo-cAMP 전처리에 의하여 $30\;{\mu}M\;adenosine$의 효과가 억제됨을 볼 수 있었다. 이상의 실험결과로 흰쥐 해마에서 $A_1-adenosine$ 수용체를 통한 adenosine의 ACh유리 감소는 G-단백에 의존적이며, 이러한 효과에 nifedipine에 예민한 $Ca^{++}$-통로와 adenylate cyclase계가 일부 관여함은 확실하나 proteinkinase C 및 glibenclamide에 예민한 $K{^+}$통로는 관여하지 않는 것으로 사료된다.

  • PDF

Homology Modeling of Chemokine Receptor CXCR3: A Novel Therapeutic Target against Inflammatory Diseases

  • M, Shalini;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제8권3호
    • /
    • pp.164-175
    • /
    • 2015
  • CXCR3 is a C-X-C chemokine receptor type 3 also known as GPR9 and CD183. CXCR3 is a G-Protein coupled chemokine receptor which interacts with three endogenous interferon inducible chemokine's (CXCL9, CXCL10 and CXCL11) and is proved to play a vital role in the Th1 inflammatory responses. CXCR3 has been implicated to be associated with various disease conditions like inflammatory diseases, autoimmune diseases, type I diabetes and acute cardiac allograft rejection. Therefore CXCR3 receptor is found to be an attractive therapeutic target for the treatment of inflammatory diseases. Inorder to decipher the biological function of a CXCR3, 3D structure is of much important but the crystal structure for CXCR3 has not yet been resolved. Hence, in the current study Homology modeling of CXCR3 was performed against various templates and validated using different parameters to suggest the best model for CXCR3. The reported best model can be used for further studies such as docking to identify the important binding site residues.

Chemical Modification of Transducin with Dansyl Chloride Hinders Its Binding to Light-activated Rhodopsin

  • Kosoy, Ana;Moller, Carolina;Perdomo, Deisy;Bubis, Jose
    • BMB Reports
    • /
    • 제37권2호
    • /
    • pp.260-267
    • /
    • 2004
  • Transducin (T), the heterotrimeric guanine nucleotide binding protein in rod outer segments, serves as an intermediary between the receptor protein, rhodopsin, and the effector protein, cGMP phosphodiesterase. Labeling of T with dansyl chloride (DnsCl) inhibited its light-dependent guanine nucleotide binding activity. Conversely, DnsCl had no effect on the functionality of rhodopsin. Approximately 2-3 mol of DnsCl were incorporated per mole of T. Since fluoroaluminate was capable of activating DnsCl-modified T, this lysine-specific labeling compound did not affect the guanine nucleotide-binding pocket of T. However, the labeling of T with DnsCl hindered its binding to photoexcited rhodopsin, as shown by sedimentation experiments. Additionally, rhodopsin completely protected against the DnsCl inactivation of T. These results demonstrated the existence of functional lysines on T that are located in the proximity of the interaction site with the photoreceptor protein.

Domperidone, a Dopamine Receptor D2 Antagonist, Induces Apoptosis by Inhibiting the ERK/STAT3-Mediated Pathway in Human Colon Cancer HCT116 Cells

  • So Jin Sim;Jeong-Hoon Jang;Joon-Seok Choi;Kyung-Soo Chun
    • Biomolecules & Therapeutics
    • /
    • 제32권5호
    • /
    • pp.568-576
    • /
    • 2024
  • Colorectal cancer (CRC) continues to demonstrate high incidence and mortality rates, emphasizing that implementing strategic measures for prevention and treatment is crucial. Recently, the dopamine receptor D2 (DRD2), a G protein-coupled receptor, has been reported to play multiple roles in growth of tumor cells. This study investigated the anticancer potential of domperidone, a dopamine receptor D2 antagonist, in HCT116 human CRC cells. Domperidone demonstrated concentration- and time-dependent reductions in cell viability, thereby inducing apoptosis. The molecular mechanism revealed that domperidone modulated the mitochondrial pathway, decreasing mitochondrial Bcl-2 levels, elevating cytosolic cytochrome C expression, and triggering caspase-3, -7, and -9 cleavage. Domperidone decreased in formation of β-arrestin2/MEK complex, which contributing to inhibition of ERK activation. Additionally, treatment with domperidone diminished JAK2 and STAT3 activation. Treatment of U0126, the MEK inhibitor, resulted in reduced phosphorylation of MEK, ERK, and STAT3 without alteration of JAK2 activation, indicating that domperidone targeted both MEK-ERK-STAT3 and JAK2-STAT3 signaling pathways. Immunoblot analysis revealed that domperidone also downregulated DRD2 expression. Domperidone-induced reactive oxygen species (ROS) generation and N-acetylcysteine treatment mitigated ROS levels and restored cell viability. An in vivo xenograft study verified the significant antitumor effects of domperidone. These results emphasize the multifaceted anticancer effects of domperidone, highlighting its potential as a promising therapeutic agent for human CRC.

Chromium acetate stimulates adipogenesis through regulation of gene expression and phosphorylation of adenosine monophosphate-activated protein kinase in bovine intramuscular or subcutaneous adipocytes

  • Kim, Jongkyoo;Chung, Kiyong;Johnson, Bradley J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권4호
    • /
    • pp.651-661
    • /
    • 2020
  • Objective: We hypothesized that Cr source can alter adipogenic-related transcriptional regulations and cell signaling. Therefore, the objective of the study was to evaluate the biological effects of chromium acetate (CrAc) on bovine intramuscular (IM) and subcutaneous (SC) adipose cells. Methods: Bovine preadipocytes isolated from two different adipose tissue depots; IM and SC were used to evaluate the effect of CrAc treatment during differentiation on adipogenic gene expression. Adipocytes were incubated with various doses of CrAc: 0 (differentiation media only, control), 0.1, 1, and 10 μM. Cells were harvested and then analyzed by real-time quantitative polymerase chain reaction in order to measure the quantity of adenosine monophosphate-activated protein kinase-α (AMPK-α), CCAAT enhancer binding protein-β (C/EBPβ), G protein-coupled receptor 41 (GPR41), GPR43, peroxisome proliferator-activated receptor-γ (PPARγ), and stearoyl CoA desaturase (SCD) mRNA relative to ribosomal protein subunit 9 (RPS9). The ratio of phosphorylated-AMPK (pAMPK) to AMPK was determined using a western blot technique in order to determine changing concentration. Results: The high dose (10 μM) of CrAc increased C/EBPβ, in both IM (p = 0.02) and SC (p = 0.02). Expression of PPARγ was upregulated by 10 μM of CrAc in IM but not in SC. Expression of SCD was also increased in both IM and SC with 10 μM of CrAc treatment. Addition of CrAc did not alter gene expression of glucose transporter 4, GPR41, or GPR43 in both IM and SC adipocytes. Addition of CrAc, resulted in a decreased pAMPKα to AMPKα ration (p<0.01) in IM. Conclusion: These data may indicate that Cr source may influence lipid filling in IM adipocytes via inhibitory action of AMPK phosphorylation and upregulating expression of adipogenic genes.

miR-374 promotes myocardial hypertrophy by negatively regulating vascular endothelial growth factor receptor-1 signaling

  • Lee, Jong Sub;Song, Dong Woo;Park, Jei Hyoung;Kim, Jin Ock;Cho, Chunghee;Kim, Do Han
    • BMB Reports
    • /
    • 제50권4호
    • /
    • pp.208-213
    • /
    • 2017
  • Vascular endothelial growth factor (VEGF) is an essential cytokine that has functions in the formation of new blood vessels and regression of cardiac hypertrophy. VEGF/VEGF-receptor-1 (VEGFR1) signaling plays a key role in the regression of cardiac hypertrophy, whereas VEGF/VEGFR2 signaling leads to cardiac hypertrophy. In this study, we identified the prohypertrophic role of miR-374 using neonatal rat ventricular myocytes (NRVMs). Our results showed that overexpression of miR-374 activated G protein-coupled receptor-mediated prohypertrophic pathways by the inhibition of VEGFR1-dependent regression pathways. Luciferase assays revealed that miR-374 could directly target the 3'-untranslated regions of VEGFR1 and cGMP-dependent protein kinase-1. Collectively, these findings demonstrated that miR-374 was a novel pro-hypertrophic microRNA functioning to suppress the VEGFR1-mediated regression pathway.

GPCR 냉동보관 세포의 활용을 위한 냉동조건의 최적화 연구 (Optimization of the cryopreserved condition for utilization of GPCR frozen cells)

  • 노효진;이승호
    • 한국산학기술학회논문지
    • /
    • 제16권2호
    • /
    • pp.1200-1206
    • /
    • 2015
  • 신약 개발의 주요 표적이 되는 G-protein coupled receptor (GPCR)은 대부분의 생리적 활동에 관여하며 다양한 질병과 질환들에 관련되어 있다. GPCR을 타겟으로 하는 의약개발 연구에서 필수적인 실험방법으로 많이 활용되고 있는 세포기반 스크리닝 기술들은 사용되는 세포의 상태에 따라 데이터의 질이 좌우되는데 최근, 실험에 사용할 세포를 매번 배양하면서 소모되는 비용과 데이터의 변동을 줄이기 위해 냉동보관 세포를 적용하는 추세이다. 이에 본 연구에서는 단일 세포를 많은 양으로 배양하고 냉동 보관한 다음 사용되는 세포의 반응을 최적화하기 위하여 칼슘 검출을 위한 광 단백질이 포함된 세포주에 calcium sensing receptor와 urotensin II receptor가 안정적으로 발현되는 안정화 세포를 제작하고 $-80^{\circ}C$에서 보관한 다음 7 일 간격으로 실험했을 때 효능제와 길항제 반응을 비교하였다. 실험결과 보관기간이 증가함에 따라 세포 신호 값이 감소하였지만 $EC_{50}$$IC_{50}$ 값의 변화는 나타나지 않았다($EC_{50}:3.46{\pm}1.36mM$, $IC_{50}:0.49{\pm}0.15{\mu}M$). 그러나 액체질소에서 보관한 세포의 경우에서는 비냉동 세포와 비교하여 세포 신호 값이 감소했지만 보존기간에 따른 변화가 나타나지 않았으며 기간에 따른 $IC_{50}:0.49{\pm}0.15{\mu}M$$IC_{50}$의 변화도 없었다. 보관기간이 경과 될수록 세포의 신호 값이 감소하는 것은 세포 손상도 증가가 원인인 것으로 판단되며, 이러한 결과들로부터 장기간 냉동 보관을 위해서는 액체질소를 이용하는 것이 가장 효과적이고 한 달 이내 단기간 사용의 목적으로는 $-80^{\circ}C$ 보관조건도 가능할 것으로 판단된다. 이와 같이 냉동세포의 적극적인 활용을 통하여 초기 스크리닝 과정에서 나타나는 실험 유동성을 감소시킬 수 있을 것으로 예상된다.

YH18968, a Novel 1,2,4-Triazolone G-Protein Coupled Receptor 119 Agonist for the Treatment of Type 2 Diabetes Mellitus

  • Han, Taedong;Lee, Byoung Moon;Park, Yoo Hoi;Lee, Dong Hoon;Choi, Hyun Ho;Lee, Taehoon;Kim, Hakwon
    • Biomolecules & Therapeutics
    • /
    • 제26권2호
    • /
    • pp.201-209
    • /
    • 2018
  • G protein-coupled receptor 119 (GPR119) is expressed in the pancreas and gastrointestinal tract, and its activation promotes insulin secretion in the beta cells of the pancreatic islets as well as the secretion of glucagon-like peptide-1 (GLP-1) in intestinal L cells, consequently improving glucose-stimulated insulin secretion. Due to this dual mechanism of action, the development of small-molecule GPR119 agonists has received significant interest for the treatment of type 2 diabetes. We newly synthesized 1,2,4-triazolone derivatives of GPR119 agonists, which demonstrated excellent outcomes in a cyclic adenosine monophosphate (cAMP) assay. Among the synthesized derivatives, YH18968 showed cAMP=2.8 nM; in GLUTag cell, GLP-1secretion=2.3 fold; in the HIT-T15 cell, and insulin secretion=1.9 fold. Single oral administration of YH18968 improved glucose tolerance and combined treatment with a dipeptidyl peptidase 4 (DPP-4) inhibitor augmented the glucose lowering effect as well as the plasma level of active GLP-1 in normal mice. Single oral administration of YH18968 improved glucose tolerance in a diet induced obese mice model. This effect was maintained after repeated dosing for 4 weeks. The results indicate that YH18968 combined with a DPP-4 inhibitor may be an effective therapeutic candidate for the treatment of type 2 diabetes.

G Protein-Coupled Receptor Signaling in Gastrointestinal Smooth Muscle

  • Sohn, Uy-Dong;Kim, Dong-Seok;Murthy, Karnam S.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권4호
    • /
    • pp.287-297
    • /
    • 2001
  • Contraction of smooth muscle is initiated by an increase in cytosolic $Ca^{2+}$ leading to activation of $Ca^{2+}$/ calmodulin-dependnet myosin light chain (MLC) kinase and phosphorylation of MLC. The types of contraction and signaling mechanisms mediating contraction differ depending on the region. The involvement of these different mechanisms varies depending on the source of $Ca^{2+}$ and the kinetic of $Ca^{2+}$ mobilization. $Ca^{2+}$ mobilizing agonists stimulate different phospholipases $(PLC-{\beta},\;PLD\;and\;PLA_2)$ to generate one or more $Ca^{2+}$ mobilizing messengers $(IP_3\;and\;AA),$ and diacylglycerol (DAG), an activator of protein kinase C (PKC). The relative contributions of $PLC-{\beta},\;PLA_2$ and PLD to generate second messengers vary greatly between cells and types of contraction. In smooth muscle cell derived form the circular muscle layer of the intestine, preferential hydrolysis of $PIP_2$ and generation of $IP_3$ and $IP_3-dependent\;Ca^{2+}$ release initiate the contraction. In smooth muscle cells derived from longitudinal muscle layer of the intestine, preferential hydrolysis of PC by PLA2, generation of AA and AA-mediated $Ca^{2+}$ influx, cADP ribose formation and $Ca^{2+}-induced\;Ca^{2+}$ release initiate the contraction. Sustained contraction, however, in both cell types is mediated by $Ca^{2+}-independent$ mechanism involving activation of $PKC-{\varepsilon}$ by DAG derived form PLD. A functional linkage between $G_{13},$ RhoA, ROCK, $PKC-{\varepsilon},$ CPI-17 and MLC phosphorylation in sustained contraction has been implicated. Contraction of normal esophageal circular muscle (ESO) in response to acetylcholine (ACh) is linked to $M_2$ muscarinic receptors activating at least three intracellular phospholipases, i.e. phosphatidylcholine-specific phospholipase C (PC-PLC), phospholipase D (PLD) and the high molecular weight (85 kDa) cytosolic phospholipase $A_2\;(cPLA_2)$ to induce phosphatidylcholine (PC) metabolism, production of diacylglycerol (DAG) and arachidonic acid (AA), resulting in activation of a protein kinase C (PKC)-dependent pathway. In contrast, lower esophageal sphincter (LES) contraction induced by maximally effective doses of ACh is mediated by muscarinic $M_3$ receptors, linked to pertussis toxin-insensitive GTP-binding proteins of the $G_{q/11}$ type. They activate phospholipase C, which hydrolyzes phosphatidylinositol bisphosphate $(PIP_2),$ producing inositol 1, 4, 5-trisphosphate $(IP_3)$ and DAG. $IP_3$ causes release of intracellular $Ca^{2+}$ and formation of a $Ca^{2+}$-calmodulin complex, resulting in activation of myosin light chain kinase and contraction through a calmodulin-dependent pathway.

  • PDF

Odorant G protein-coupled receptors as potential therapeutic targets for adult diffuse gliomas: a systematic analysis and review

  • Cho, Hee Jin;Koo, JaeHyung
    • BMB Reports
    • /
    • 제54권12호
    • /
    • pp.601-607
    • /
    • 2021
  • Odorant receptors (ORs) account for about 60% of all human G protein-coupled receptors (GPCRs). OR expression outside of the nose has functions distinct from odor perception, and may contribute to the pathogenesis of disorders including brain diseases and cancers. Glioma is the most common adult malignant brain tumor and requires novel therapeutic strategies to improve clinical outcomes. Here, we outlined the expression of brain ORs and investigated OR expression levels in glioma. Although most ORs were not ubiquitously expressed in gliomas, a subset of ORs displayed glioma subtype-specific expression. Moreover, through systematic survival analysis on OR genes, OR51E1 (mouse Olfr558) was identified as a potential biomarker of unfavorable overall survival, and OR2C1 (mouse Olfr15) was identified as a potential biomarker of favorable overall survival in isocitrate dehydrogenase (IDH) wild-type glioma. In addition to transcriptomic analysis, mutational profiles revealed that somatic mutations in OR genes were detected in > 60% of glioma samples. OR5D18 (mouse Olfr1155) was the most frequently mutated OR gene, and OR5AR1 (mouse Olfr1019) showed IDH wild-type-specific mutation. Based on this systematic analysis and review of the genomic and transcriptomic profiles of ORs in glioma, we suggest that ORs are potential biomarkers and therapeutic targets for glioma.