• Title/Summary/Keyword: C parvum

Search Result 73, Processing Time 0.03 seconds

CysQ of $Cryptosporidium$ $parvum$, a Protozoa, May Have Been Acquired from Bacteria by Horizontal Gene Transfer

  • Lee, Ji-Young;Kim, Sang-Soo
    • Genomics & Informatics
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • Horizontal gene transfer (HGT) is the movement of genetic material between kingdoms and is considered to play a positive role in adaptation. $Cryptosporidium$ $parvum$ is a parasitic protozoan that causes an infectious disease. Its genome sequencing reported 14 bacteria-like proteins in the nuclear genome. Among them, cgd2_1810, which has been annotated as CysQ, a sulfite synthesis pathway protein, is listed as one of the candidates of genes horizontally transferred from bacterial origin. In this report, we examined this issue using phylogenetic analysis. Our BLAST search showed that $C.$ $parvum$ CysQ protein had the highest similarity with that of proteobacteria. Analysis with NCBI's Conserved Domain Tree showed phylogenetic incongruence, in that $C.$ $parvum$ CysQ protein was located within a branch of proteobacteria in the cd01638 domain, a bacterial member of the inositol monophosphatase family. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, the sulfate assimilation pathway, where CysQ plays an important role, is well conserved in most eukaryotes as well as prokaryotes. However, the Apicomplexa, including $C.$ $parvum$, largely lack orthologous genes of the pathway, suggesting its loss in those protozoan lineages. Therefore, we conclude that $C.$ $parvum$ regained cysQ from proteobacteria by HGT, although its functional role is elusive.

Development of Cryptosporidium parvum in cell culture (세포배양에서 Cryptosporidium parvum의 발육)

  • Kim, Bo-sook;Joo, Hoo-don;Wee, Sung-hwan;Kim, Tae-jong
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.2
    • /
    • pp.317-326
    • /
    • 1995
  • The purpose of this study was to establish a method for in vitro culture of C parvum isolated in Korea by determination of suitable cell model to complete development of this parasite. The result obtained were summerized as follows: 1. To determine the most suitable cell line, six types of cell line were examined by microscopy. All cell lines were infected with C parvum and showed the highest infection score in HmLu cells. 2. The staining methods including DMSO-modified acid-fast(A-F) stain, hematoxylin-eosin(H & E) stain and immunofluorescence antibody(IFA) stain were applied to examine the infection of C parvum in cell culture. These staining methods were possible to examine the infection of C parvum in cell culture. The most sensitive one was IFA staining technique. 3. Developmental stages of C parvum in HmLu cell were observed. After the initial 8 hour incubation period, some trophozoites were observed. The meronts and gametes were appeared at 24-48 hour post inoculation(PI), and oocysts were observed firstly at 48-72 hour PI. 4. In H & E stain, the parasite appeared as basophilic within parasitophorous vacuole membrane(PVM) and lying in cytoplasm at near the nucleus of the host cells. It was able to distinguish the type I, type II meronts and gametes. 5. In DMSO-modified acid-fast stain, specific stained parasites were appeared firstly after 48 hour PI. The parasites were showed with different degrees of staining bright red color within PVM. 6. The endogenous stages of parasites in HmLu cell recovered at 48, 96, 120 and 144 hour after inoculation were reacted with rabbit immunized serum in immunofluorescence antibody and avidin-biotin complex peroxidase staining technique.

  • PDF

Production of Monoclonal Antibodies by Hybridomas Sensitized to Sporozoites of Cryptosporidium parvum (Cryptosporidium parvum Sporozoites 에 감작된 Hybridomas 에서의 Monoclonal Antibody 생산)

  • Cho, Myung-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.5
    • /
    • pp.494-498
    • /
    • 1989
  • Hybridoma cell lines, which secrete monoclonal antibodies (mAbs) against the surface antigens of Cryptosporidium parvum Sporozoites, were produced by fusing spleen cells of C. parvum Sporozoite-immunized mice with P3-X63-Ag8 myeloma cells. Two cloned antibody-secreting cell lines, Kor1 and Ea2, were established and produced IgG1 and IgG2a antibodies, respectively. Percoll-purified sporozoites were solubilized and separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Western blot assay demonstrates that an antigen of 20-kDa was bound by monoclonals. By indirect immunofluorescence microscopy, mAb exhibited uniform binding to the sporozoite surface.

  • PDF

In vitro infection of Cryptosporidium parvum to four different cell lines

  • Yu, Jae-Ran;Choi, Sung-Don;Kim, Young-Wook
    • Parasites, Hosts and Diseases
    • /
    • v.38 no.2
    • /
    • pp.59-64
    • /
    • 2000
  • To determine a suitable condition for in vitro infection model of cryptosporidium parvum, four different cell lines, AGS, MDCK, HCT-8 and Caco-2, were used as host cell lines which were cultured at various concentrations of added supplements. These supplement include fetal bovine serum (FBS), sodium choleate, ascorbic acid, folic acid, calcium pantothenate, para-aminobenzoic acid and pyruvate and their effects on the cell lines which were infected with C. parvum were evaluated. The results of this study showed that the AGS cell line was most susceptible to C. parvum whereas the Caco-2 cells appeared to be least susceptible to C. parvum. In regards to the serum condition, 10% FBS was suitable for the growth of AGS and HCT-8 cells, and 1% FBS was good for the growth of the MDCK cells when they were inoculated with C. parvum. Vitamines had a positive effect on the AGS cells, and pyruvate also showed positive effects on all of the cell lines except for Caco-2. Modified medium for each cell line was prepared by adding appropriate amounts of each supplement which resulted in the highest parasite infection number. Modified media increased the number of parasites infected on AGS cells to 2.3-fold higher when compared to the control media. In this study, we found that the AGS cell line was a suitable host model for evaluating C. parvum in vitro study and the media contents for the optimal infection conditions were suggested.

  • PDF

Prediction of Cryptosporidium parvum Inactivation in Advanced Ozone Drinking Water Treatment with Lab Scale Experiments (실험실 규모 크립토스포리디움의 불활성화 실험을 통한 오존 고도정수처리 정수장에서 소독 효과 예측)

  • Cho, Min;Chung, Hyenmi;Kim, Reeho;Shon, Jinsik;Park, Sangjung;Yoon, Jeyong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.7-13
    • /
    • 2005
  • With the appearance of pathogenic microorganisms, which were resistant to free chlorine, the significant attention to the necessity of powerful alternative disinfection methods such as ozone, chlorine dioxide, LTV irradiation to inactivating pathogens has been increased in water treatment. Among these alternative disinfection methods, ozone is well known as strong biocidal method and the usage of ozone is also increasing in Korea. However, in Korea, there has been no report on the quantitative study of Cryptosporidium parvum with ozone and its evaluation in advanced drinking water treatments. This study reports on the methodology for predicting the ozone inactivation of Cryptosporidium parvum by ozone disinfection in advanced drinking water treatment. The method is based on the fact that a specific inactivation level of microorganisms is achieved at a unique value of ozone exposures, independent of ozone dose and type of water, and quantitatively described by a delayed Chick-Watson model. The required values ${\bar{C}}T$ for 2 log inactivation of Cryptosporidium parvum was $6.0mg/L{\cdot}min$ and $15.5mg/L{\cdot}min$ at $20^{\circ}C$ and $5^{\circ}C$, respectively. From this obtained Cryptosporidium parvum inactivation curves and calculated ${\bar{C}}T$ values of advanced drinking water treatment water in Korea with FIA (Flow injection alaysis), we can predict that water treatment plant can achieve a 1.1~1.8 log inactivation and 0~0.4 log inactivation at $20^{\circ}C$ and $5^{\circ}C$, respectively. This methodology will be useful for drinking water treatment plants which intend to evaluate the disinfection efficiencies of their ozonation process without full scale test and direct experiments with Cryptosporidium parvum.

Ultrastructural Changes in Cryptosporidium parvum Oocysts by Gamma Irradiation

  • Joung, Mi-Gyo;Yun, Se-Jeong;Joung, Mi-Joung;Park, Woo-Yoon;Yu, Jae-Ran
    • Parasites, Hosts and Diseases
    • /
    • v.49 no.1
    • /
    • pp.25-31
    • /
    • 2011
  • Cryptosporidium parvum is known as one of the most highly resistant parasites to gamma irradiation. To morphologically have an insight on the radioresistance of this parasite, ultrastructural changes in C. parvum sporozoites were observed after gamma irradiation using various doses (1, 5, 10, and 25 kGy) following a range of post-irradiation incubation times (10 kGy for 6, 12, 24, 48, 72, and 96 hr). The ultrastructures of C. parvum oocysts changed remarkably after a 10-kGy irradiation. Nuclear membrane changes and degranulation of dense granules were observed with high doses over 10 kGy, and morphological changes in micronemes and rhoptries were observed with very high doses over 25 kGy. Oocyst walls were not affected by irradiation, whereas the internal structures of sporozoites degenerated completely 96 hr post-irradiation using a dose of 10 kGy. From this study, morphological evidence of radioresistance of C. parvum has been supplemented.

Quantitative Evaluation of Infectivity Change of Cryptosporidium parvum after Gamma Irradiation

  • Lee, Soo-Ung;Joung, Mi-Kyo;Nam, Tae-Kyoung;Park, Woo-Yoon;Yu, Jae-Ran
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.1
    • /
    • pp.7-11
    • /
    • 2009
  • Cryptosporidium parvum is a well-known waterborne and opportunistic intracellular protozoan parasite that causes diarrheal illness. In this study, we quantitatively investigated reduction of the infectivity of C. parvum after gamma irradiation and repair of the infectivity during incubation time after irradiation. C. parvum oocysts were subjected to gamma irradiation at various doses (1, 5, 10, and 25 kGy), and the in vitro infectivity was measured by real-time PCR every day up to 7 days after irradiation. The in vitro infectivity of C. parvum on human ileocecal adenocarcinoma cells (HCT-8) was effectively reduced (> $2\;{\log}_{10}$) by irradiation at 10kGy or more. However, in the experiment to find out repair of the infectivity, recovery was not noted until day 7 post-incubation.

Molecular Prevalence and Genotypes of Cryptosporidium parvum and Giardia duodenalis in Patients with Acute Diarrhea in Korea, 2013-2016

  • Ma, Da-Won;Lee, Myoung-Ro;Hong, Sung-Hee;Cho, Shin-Hyeong;Lee, Sang-Eun
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.5
    • /
    • pp.531-536
    • /
    • 2019
  • Cryptosporidium parvum and Giardia duodenalis are the main diarrhea-causing parasitic pathogens; however, their prevalence in Korea is unknown. Here, we conducted a survey to determine the prevalence and genotype distribution of these 2 pathogens causing acute diarrhea in 8,571 patients hospitalized in 17 Regional Institute of Health Environment sites in Korea, during 2013-2016. C. parvum and G. duodenalis were detected and genotyped by nested PCR, and the isolate were molecularly characterized by sequencing the glycoprotein 60 (Gp60) and ${\beta}-giardin$ genes, respectively. The overall prevalence of C. parvum and G. duodenalis was 0.37% (n=32) and 0.55% (n=47), respectively, and both pathogens were more prevalent in children under 9 years old. Molecular epidemiological analysis showed that the C. parvum isolates belonged to the IIa family and were subtyped as IIaA13G2R1, IIaA14G2R1, IIaA15G2R1, and IIaA18G3R1. Analysis of the ${\beta}-giardin$ gene fragment from G. duodenalis showed that all positive strains belong to assemblage A. This is the first report on the molecular epidemiology and subtyping of C. parvum and G. duodenalis in such a large number of diarrheal patients in Korea. These results highlight the need for continuous monitoring of these zoonotic pathogens and provide a basis for implementing control and prevention strategies. Further, the results might be useful for epidemiological investigation of the source of outbreak.

Multiplex-Touchdown PCR to Simultaneously Detect Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis, the Major Causes of Traveler's Diarrhea

  • Shin, Ji-Hun;Lee, Sang-Eun;Kim, Tong Soo;Ma, Da-Won;Chai, Jong-Yil;Shin, Eun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.5
    • /
    • pp.631-636
    • /
    • 2016
  • This study aimed to develop a multiplex-touchdown PCR method to simultaneously detect 3 species of protozoan parasites, i.e., Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis, the major causes of traveler's diarrhea and are resistant to standard antimicrobial treatments. The target genes included the Cryptosporidium oocyst wall protein for C. parvum, Glutamate dehydrogenase for G. lamblia, and 18S ribosomal RNA (18S rRNA) for C. cayetanensis. The sizes of the amplified fragments were 555, 188, and 400 bps, respectively. The multiplex-touchdown PCR protocol using a primer mixture simultaneously detected protozoa in human stools, and the amplified gene was detected in > $1{\times}10^3$ oocysts for C. parvum, > $1{\times}10^4$ cysts for G. lamblia, and > 1 copy of the 18S rRNA gene for C. cayetanensis. Taken together, our protocol convincingly demonstrated the ability to simultaneously detect C. parvum, G. lamblia, and C. cayetanenesis in stool samples.

New record of the red algae, Halarachnion parvum (Gigartinales) and Champia lubrica (Rhodymeniales), from Korea

  • Yang, Mi Yeon;Koh, Young Ho;Kim, Myung Sook
    • Journal of Ecology and Environment
    • /
    • v.38 no.4
    • /
    • pp.663-671
    • /
    • 2015
  • We report the first finding of Halarachnion parvum and Champia lubrica from Korea based on morphology and the plastid rbcL sequence analyses. H. parvum occurs in the subtidal zone of Munseom, the southern part of Jeju. Thalli have short stipe, and elliptical to ovate fronds with marginal proliferations of up to 3 cm in height. H. parvum has zonately divided tetrasporangia and cystocarp immersed under the cortical layer. Champia lubrica appears in Namhae, Gyeongnam and Seopseom, Jeju. Thalli are erect, irregularly branched, terete, obtuse apex, up to 3-5 cm high, and have tetrahedrally divided tetrasporangia. Molecular analyses of the plastid rbcL gene reveal that two species are clearly separated from other species of their respective genera. H. parvum is sister with Halarachnion latissimum in 3.1-3.2% sequence divergence, and C. lubrica is closely related to the sample from Japan with 0.2% sequence divergence.