• Title/Summary/Keyword: C doping

Search Result 902, Processing Time 0.034 seconds

Synthesis and Sintering Behaviors of Nanostructured WC-Co Hardmetal Powders doped Grain Growth Inhibitors of VC/TaC (입자성장 억제제 VC/TaC가 첨가된 나노구조 WC-Co 초경 복합분말의 제조와 소결 특성 연구)

  • 김병기;하국현;권대환;김진천
    • Journal of Powder Materials
    • /
    • v.9 no.4
    • /
    • pp.273-279
    • /
    • 2002
  • In this study, the WC-10 wt.%Co nanopowders doped by grain growth inhibiter were produced by three different methods based on the spray conversion process. Agglomerated powders with homeogenous distribution of alloying elements and with internal particles of about 100-200 nm in diameter were synthesized. The microstructural changes and sintering behavior of hardmetal compacts were compared with doping method and sintering conditions. The microstructure of hardmetals was very sensitive to doping methods of inhibitor. Nanostructured WC-Co hardmetal powder compacts containing TaC/VC doped by chemical method instead of ball-milling shown superior sintering densification, and the microstructure maintained ultrafine scale with rounded WC particles.

Thermoelectric Properties of N-type 90% $Bi_2Te_3+10%Bi_2Se_3$ Thermoelectric Materials Produced by Melt Spinning Method and Sintering

  • Kim, Taek-Soo;Chun, Byong-Sun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.459-460
    • /
    • 2006
  • N-type $Bi_2Te_3-Sb_2Te_3$ solid solutions doped with 1$CdCl_2$ was prepared by melt spinning, crushing and vacuum sintering processes. Microstructure, bending strength and thermoelectric property were investigated as a function of the doping quantity from 0.03wt.% to 0.10wt.% and sintering temperature from $400^{\circ}C$ to $500^{\circ}C$, and finally compared with those of conventionally fabricated alloys. The alloy showed a good structural homogeneity as well as bending strength of $3.88Kgf/mm^2$. The highest thermoelectric figure of merit was obtained by doping 0.03wt.% and sintering at $500^{\circ}C$.

  • PDF

Effect of Single and Dual Doping of Rare Earth Metal Ce and Nd Elements on Electrochemical Properties of LiNi0.83 Co0.11Mn0.06O2Cathode Lithium-ion Battery Material (리튬이온전지용 양극활물질 LiNi0.83 Co0.11Mn0.06O2의 전기화학적 특성에 미치는 Ce와 Nd 희토류 금속의 단독 혹은 이중 도핑효과)

  • Kim, Yoo-Young;Ha, Jong-Keun;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2019
  • Layered $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode materials single- and dual-doped by the rare-earth elements Ce and Nd are successfully fabricated by using a coprecipitation-assisted solid-phase method. For comparison purposes, non-doping pristine $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode material is also prepared using the same method. The crystal structure, morphology, and electrochemical performances are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) mapping, and electrochemical techniques. The XRD data demonstrates that all prepared samples maintain a typical ${\alpha}-NaFeO_2$-layered structure with the R-3m space group, and that the doped samples with Ce and/or Nd have lower cation mixing than that of pristine samples without doping. The results of SEM and EDS show that doped elements are uniformly distributed in all samples. The electrochemical performances of all doped samples are better than those of pristine samples without doping. In addition, the Ce/Nd dual-doped cathode material shows the best cycling performance and the least capacity loss. At a 10 C-rate, the electrodes of Ce/Nd dual-doped cathode material exhibit good capacity retention of 72.7, 58.5, and 45.2% after 100, 200, and 300 cycles, respectively, compared to those of pristine samples without doping (24.4, 11.1, and 8.0%).

Quantum transport of doped rough-edged graphene nanoribbons FET based on TB-NEGF method

  • K.L. Wong;M.W. Chuan;A. Hamzah;S. Rusli;N.E. Alias;S.M. Sultan;C.S. Lim;M.L.P. Tan
    • Advances in nano research
    • /
    • v.17 no.2
    • /
    • pp.137-147
    • /
    • 2024
  • Graphene nanoribbons (GNRs) are considered a promising alternative to graphene for future nanoelectronic applications. However, GNRs-based device modeling is still at an early stage. This research models the electronic properties of n-doped rough-edged 13-armchair graphene nanoribbons (13-AGNRs) and quantum transport properties of n-doped rough-edged 13-armchair graphene nanoribbon field-effect transistors (13-AGNRFETs) at different doping concentrations. Step-up and edge doping are used to incorporate doping within the nanostructure. The numerical real-space nearest-neighbour tight-binding (NNTB) method constructs the Hamiltonian operator matrix, which computes electronic properties, including the sub-band structure and bandgap. Quantum transport properties are subsequently computed using the self-consistent solution of the two-dimensional Poisson and Schrödinger equations within the non-equilibrium Green's function method. The finite difference method solves the Poisson equation, while the successive over-relaxation method speeds up the convergence process. Performance metrics of the device are then computed. The results show that highly doped, rough-edged 13-AGNRs exhibit a lower bandgap. Moreover, n-doped rough-edged 13-AGNRFETs with a channel of higher doping concentration have better gate control and are less affected by leakage current because they demonstrate a higher current ratio and lower off-current. Furthermore, highly n-doped rough-edged 13-AGNRFETs have better channel control and are less affected by the short channel effect due to the lower value of subthreshold swing and drain-induced barrier lowering. The inclusion of dopants enhances the on-current by introducing more charge carriers in the highly n-doped, rough-edged channel. This research highlights the importance of optimizing doping concentrations for enhancing GNRFET-based device performance, making them viable for applications in nanoelectronics.

Discharge Characteristics of Plasma Jet Doping Device with the Atmospheric and Ambient Gas Pressure (플라즈마 제트 도핑 장치의 대기 및 기체의 압력 변화에 대한 방전 특성)

  • Kim, J.G.;Lee, W.Y.;Kim, Y.J.;Han, G.H.;Kim, D.J.;Kim, H.C.;Koo, J.H.;Kwon, G.C.;Cho, G.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.6
    • /
    • pp.301-311
    • /
    • 2012
  • Discharge property of plasma jet devices is investigated for the application to the doping processes of crystalline solar cells and others. Current-voltage characteristics are shown as the typical normal-glow discharge in the various gas pressure of plasma jets, such as in the atmospheric plasma jets of Ar-discharge, in the ambient pressure of atmospheric discharge, and in the ambient Ar-pressure of Ar-discharge. The discharge voltage of atmospheric plasma jet is required as low as about 2.5 kV while the operation voltage of low pressure below 200 Torr is low as about 1 kV in the discharge of atmospheric and Ar plasma jets. With a single channel plasma jet, the irradiated plasma current on the doped silicon wafer is obtained high as the range of 10~50 mA. The temperature increasement of wafer is normally about $200^{\circ}C$. In the result of silicon wafers doped by phosphoric acid with irradiating the plasma jets, the doping profiles of phosphorus atoms shows the possibility of plasma jet doping on solar cells.

Fabrication of Boron-Doped Polycrystalline Silicon Films for the Pressure Sensor Application (압력센서용 Boron이 첨가된 다결정 Silicom 박막의 제조)

  • 유광수;신광선
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.3 no.1
    • /
    • pp.59-65
    • /
    • 1993
  • The boron-doped polycrystalline silicon films which can be used in pressure sensors were fabricated in a high-vacuum resistance heating evaporator. Poly-Si films were deposited on quartz substrates at various temperatures and the boron was doped to the silicon film in a diffusion furnace using BN wafer. The silicon films deposited at $500^{\circ}C$ was amorphous, began to show crystalline at $600^{\circ}C$, and became polycrystalline at $700^{\circ}C$. After doping boron at $900^{\circ}C$for 10 minutes, the resistivity of the films was in the range of $0.1{\Omega}cm~1.5{\Omega}cm$, the boron density was $9.4\times10^{15}~2.1\times{10}^{17}cm^{-3}$, and the grain size was $107{\AA}~191{\AA}$.

  • PDF

The Study on Characterization of Current-limiting with Diffusion Thickness of High-Tc Superconductor Thick Film (고온초전도후막의 확산두께에 따른 전류제한 특성연구)

  • Im, Seong-Hun;Gang, Hyeong-Gon;Han, Tae-Hui;Mo, Chang-Ho;Im, Seok-Jin;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.4
    • /
    • pp.210-218
    • /
    • 2000
  • For the fabrication of $YBa_2Cu_3O_x$ thick film, a substrate of $Y_2BaCuO_5$ was fabricated by adding $CeO_2$ into $Y_2BaCuO_5$ and two types of doping materials added with binder material were prepared. Each doping material was patterned on $Y_2BaCuO_5$substrate by the screen printing method and then was annealed at the temperature with a few step. It could be observed by X-ray diffraction patterns and SEM photographs that through the diffusion process of the $Y_2BaCuO_5$ and each doping material, the $YBa_2Cu_3O_x$ phase was formed. And with n additive of $CeO_2$ the thickness of formed $YBa_2Cu_3O_x$decreased. From the experiment of current limiting on thick film, the sample with thiner thickness of $YBa_2Cu_3O_x$ showed the more effective characteristics of current limiting.

  • PDF

Evaluation of Slip and Strength of Nitrogen doped P/P- Epitaxial Silicon Wafers (질소 도핑된 P/P- Epitaxial Silicon Wafer의 Slip 및 강도 평가)

  • Choi Eun-Suck;Bae So-Ik
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.313-317
    • /
    • 2005
  • The relation between bulk microdefect (BMD) and mechanical strength of $P/P^-$ epitaxial silicon wafers (Epitaxial wafer) as a function of nitrogen concentrations was studied. After 2 step anneal$(800^{\circ}C/4hrs+1000^{\circ}C/16hrs)$, BMD was not observed in nitrogen undoped epitaxial silicon wafer while BMD existed and increased up to $3.83\times10^5\;ea/cm^2$ by addition of $1.04\times10^{14}\;atoms/cm^3$ nitrogen doping. The slip occurred for nitrogen undoped and low level nitrogen doped epitaxial wafers. However, there was no slip occurrence above $7.37\times10^{13}\;atoms/cm^3$ nitrogen doped epitaxial wafer. Mechanical strength was improved from 40 to 57 MPa as nitrogen concentrations were increased. Therefore, the nitrogen doping in silicon wafer plays an important role to improve BMD density, slip occurrence and mechanical strength of the epitaxial silicon wafers.

Optimization of process parameters for improvement of electrical properties of ITiO film (ITiO박막의 전기적 특성 향상을 위한 공정변수의 최적화)

  • Choi, Woo-Jin;Sung, Youl-Moon;Kwak, Dong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1430-1431
    • /
    • 2011
  • To develope the transparent conducting oxide(TCO) films is one of the essential technologies to improve various properties of electro-optical devices such as dye-sensitized solar cells(DSCs). ITiO thin film is considered one of the candidates as TCO electrodes of DSCs because it shows many advantages such as the high transparency in long wavelength range above 700nm and excellent properties of electrical necking between nanoporous TiO2 and ITiO transparent electrode. This paper presents the effect of sputtering processes on the structural, electrical and optical properties of ITiO thin film deposited by r.f. magnetron sputtering. The effect of doping concentration of Ti on the chemical compounds and C axis-orientation properties of were mainly studied experimentally. The morphology and electrical properties were greatly influenced by deposition processes, especially by the doping concentration of Ti. The $3.8{\times}10^{-4}{\Omega}{\cdot}cm$ of minimum volume resistivity were obtained under the experimental conditions of gas pressure 7mTorr, substrate temperature $300^{\circ}C$, and 2.5% of Ti doping concentration.

  • PDF

Effect of Pr substitution on the superconducting properties of (Pb0.5Cd0.5)SrLaCuOz

  • Lee, H.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.5-8
    • /
    • 2015
  • The effects of Pr substitution on the structural and the superconducting properties for Pb-based 1201 cuprates with compositions of $(Pb_{0.5-x}Pr_xCd_{0.5})SrLaCuO_z(0{\leq}x{\leq}0.25)$ and $(Pb_{0.45}Pr_{0.05}Cd_{0.5})(Sr_{1-y}La_{1+y})CuO_z(0{\leq}y{\leq}0.1)$ were investigated. It is found that $T_c$ decreases as the Pr-doping content x increases in the $(Pb_{0.5-x}Pr_xCd_{0.5})SrLaCuO_z$ samples, whereas $T_c$ of $(Pb_{0.45}Pr_{0.05}Cd_{0.5})(Sr_{1-y}La_{1+y})CuO_z$ samples increases as the La-doping content y increases. The experimental results were discussed in connection with the change in hole concentration of the samples.