• Title/Summary/Keyword: C*-algebra

Search Result 322, Processing Time 0.024 seconds

Spectral subspaces for compact group actions on $C^*$-algebras

  • Jang, Sun-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.525-533
    • /
    • 1997
  • We analysis spectral subspaces of $C^*$-algebras for a compacr group action. And we prove the condition that the fixed point algebra of the product action is the tensor product of the fixed point algebras.

  • PDF

The Embeddability of s1(n,C) Modules

  • Kim, Dong-Seok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.803-808
    • /
    • 2007
  • In present article, we consider the embeddability problems for finite dimensional irreducible modules over a complex simple Lie algebra L. For s1(n,C) modules, we determine when one can be embedded into the other if s1(n,C) modules are tensor products of fundamental modules.

  • PDF

ON STABILITY PROBLEMS WITH SHADOWING PROPERTY AND ITS APPLICATION

  • Chu, Hahng-Yun;Han, Gil-Jun;Kang, Dong-Seung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.673-688
    • /
    • 2011
  • Let $n{\geq}2$ be an even integer. We investigate that if an odd mapping f : X ${\rightarrow}$ Y satisfies the following equation $2_{n-2}C_{\frac{n}{2}-1}rf\(\sum\limits^n_{j=1}{\frac{x_j}{r}}\)\;+\;{\sum\limits_{i_k{\in}\{0,1\} \atop {{\sum}^n_{k=1}\;i_k={\frac{n}{2}}}}\;rf\(\sum\limits^n_{i=1}(-1)^{i_k}{\frac{x_i}{r}}\)=2_{n-2}C_{{\frac{n}{2}}-1}\sum\limits^n_{i=1}f(x_i),$ then f : X ${\rightarrow}$ Y is additive, where $r{\in}R$. We also prove the stability in normed group by using shadowing property and the Hyers-Ulam stability of the functional equation in Banach spaces and in Banach modules over unital C-algebras. As an application, we show that every almost linear bijection h : A ${\rightarrow}$ B of unital $C^*$-algebras A and B is a $C^*$-algebra isomorphism when $h(\frac{2^s}{r^s}uy)=h(\frac{2^s}{r^s}u)h(y)$ for all unitaries u ${\in}$ A, all y ${\in}$ A, and s = 0, 1, 2,....

Understanding and Effectiveness of Formative Assessment Program in CRESST Focused on the Algebra Domain in the 8th Grade (CRESST 형성평가 프로그램의 이해 및 효과성 - 중학교 2학년 대수 관련 내용을 중심으로 -)

  • Choe, Seung-Hyun;Hwang, Hye-Jeang;Ryu, Hyun-Ah
    • School Mathematics
    • /
    • v.12 no.2
    • /
    • pp.193-217
    • /
    • 2010
  • CRESST(the National Center for Research on Evaluation, Standards, and Student Testing at UCLA) is now carrying out the research, which was scheduled for a five year period from 2007 to 2011. This research aimed at testing the effectiveness of the formative assessment program by continuously conducting the program on the target group and steadily applying the recurring feedback, in order to reform the teachers' teaching and to facilitate students' learning. To do this, CRESST has set out to develop the material for 7th graders since January 2007, and KICE(Korea Institute of Curriculum and Evaluation) have been running a collaborated research since July 2007, while sharing the instructional materials developed by CRESST. In 2008, the pre-test was conducted prior to this study in 2009. Especially, this paper deals with the Korean 8th graders' scholastic achievements in algebra domain measured by PowerSource(c). In addition, this study would examine the responses of teachers and students on its application.

  • PDF

LINEAR FUNCTIONALS ON $\mathcal{O}_n$ AND PRODUCT PURE STATES OF UHF

  • Lee, Jung-Rye;Shin, Dong-Yun
    • Korean Journal of Mathematics
    • /
    • v.8 no.2
    • /
    • pp.155-162
    • /
    • 2000
  • For a sequence $\{{\eta}_m\}_m$ of unit vectors in $\mathbb{C}^n$, we consider the associated linear functional ${\omega}$ on the Cuntz algebra $\mathcal{O}_n$. We show that the restriction ${\omega}{\mid}_{UHF_n}$ is the product pure state of a subalgebra $UHF_n$ of $\mathcal{O}_n$ such that ${\omega}{\mid}_{UHF_n}={\otimes}{\omega}_m$ with ${\omega}_m({\cdot})$ < ${\cdot}{\eta}_m,{\eta}_m$ >. We study product pure states of UHF and obtain a concrete description of them in terms of unit vectors. We also study states of $UHF_n$ which is the restriction of the linear functionals on $O_n$ associated to a fixed unit vector in $\mathbb{C}^n$.

  • PDF

PAIR OF (GENERALIZED-)DERIVATIONS ON RINGS AND BANACH ALGEBRAS

  • Wei, Feng;Xiao, Zhankui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.857-866
    • /
    • 2009
  • Let n be a fixed positive integer, R be a 2n!-torsion free prime ring and $\mu$, $\nu$ be a pair of generalized derivations on R. If < $\mu^2(x)+\nu(x),\;x^n$ > = 0 for all x $\in$ R, then $\mu$ and $\nu$ are either left multipliers or right multipliers. Let n be a fixed positive integer, R be a noncommutative 2n!-torsion free prime ring with the center $C_R$ and d, g be a pair of derivations on R. If < $d^2(x)+g(x)$, $x^n$ > $\in$ $C_R$ for all x $\in$ R, then d = g = 0. Then we apply these purely algebraic techniques to obtain several range inclusion results of pair of (generalized-)derivations on a Banach algebra.

On *-bimultipliers, Generalized *-biderivations and Related Mappings

  • Ali, Shakir;Khan, Mohammad Salahuddin
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.3
    • /
    • pp.301-309
    • /
    • 2011
  • In this paper we dene the notions of left *-bimultiplier, *-bimultiplier and generalized *-biderivation, and to prove that if a semiprime *-ring admits a left *-bimultiplier M, then M maps R ${\times}$ R into Z(R). In Section 3, we discuss the applications of theory of *-bimultipliers. Further, it was shown that if a semiprime *-ring R admits a symmetric generalized *-biderivation G : R ${\times}$ R ${\rightarrow}$ R with an associated nonzero symmetric *-biderivation R ${\times}$ R ${\rightarrow}$ R, then G maps R ${\times}$ R into Z(R). As an application, we establish corresponding results in the setting of $C^*$-algebra.

SPHERICAL FUNCTIONS ON PROJECTIVE CLASS ALGEBRAS

  • Choi, Eun-Mi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.189-212
    • /
    • 2006
  • Let $F^{\alpha}G$ be a twisted group algebra with basis ${{\mu}g|g\;{\in}\;G}$ and $P\;=\;{C_g|g\;{\in}\;G}$ be a partition of G. A projective class algebra associated with P is a subalgebra of $F^{\alpha}G$ generated by all class sums $\sum\limits{_{x{\in}C_g}}\;{\mu}_x$. A main object of the paper is to find interrelationships of projective class algebras in $F^{\alpha}G$ and in $F^{\alpha}H$ for H < G. And the a-spherical function will play an important role for the purpose. We find functional properties of a-spherical functions and investigate roles of $\alpha-spherical$ functions as characters of projective class algebras.

A NOTE ON BILATERAL SEMIDIRECT PRODUCT DECOMPOSITIONS OF SOME MONOIDS OF ORDER-PRESERVING PARTIAL PERMUTATIONS

  • Fernandes, Vitor H.;Quinteiro, Teresa M.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.495-506
    • /
    • 2016
  • In this note we consider the monoid $\mathcal{PODI}_n$ of all monotone partial permutations on $\{1,{\ldots},n\}$ and its submonoids $\mathcal{DP}_n$, $\mathcal{POI}_n$ and $\mathcal{ODP}_n$ of all partial isometries, of all order-preserving partial permutations and of all order-preserving partial isometries, respectively. We prove that both the monoids $\mathcal{POI}_n$ and $\mathcal{ODP}_n$ are quotients of bilateral semidirect products of two of their remarkable submonoids, namely of extensive and of co-extensive transformations. Moreover, we show that $\mathcal{PODI}_n$ is a quotient of a semidirect product of $\mathcal{POI}_n$ and the group $\mathcal{C}_2$ of order two and, analogously, $\mathcal{DP}_n$ is a quotient of a semidirect product of $\mathcal{ODP}_n$ and $\mathcal{C}_2$.

On the Tarry-Escott and Related Problems for 2 × 2 matrices over ℚ

  • Supawadee Prugsapitak;Walisa Intarapak;Vichian Laohakosol
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.3
    • /
    • pp.345-353
    • /
    • 2023
  • Reduced solutions of size 2 and degree n of the Tarry-Escott problem over M2(ℚ) are determined. As an application, the diophantine equation αAn + βBn = αCn + βDn, where α, β are rational numbers satisfying α + β ≠ 0 and n ∈ {1, 2}, is completely solved for A, B, C, D ∈ M2(ℚ).