• Title/Summary/Keyword: C++

Search Result 164,134, Processing Time 0.126 seconds

Effect of SiC Particle Size on Microstructure of $Si_3N_4/SiC$ Nanocomposites ($Si_3N_4/SiC$ 초미립복합체의 미세조직에 미치는 SiC 입자크기의 영향)

  • 이창주;김득중
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.152-157
    • /
    • 2000
  • Si3N4/SiC nanocomposite ceramics containing 5 wt%dispersed SiC particles were prepared by gas-pressure-sintering at 200$0^{\circ}C$ under nitrogen atmosphere. SiC particles with average sizes of 0.2 and 0.5${\mu}{\textrm}{m}$ were used, and the effect of the SiC particle size on the microstructure was investigated. The addition of SiC particles effectively suppressed the growth of the Si3N4 matrix grains. The effect of grain growth inhibition was higher in the nanocomposites dispersed with fine SiC. SiC particles were dispersed uniformly inside Si3N4 matrix grains and on grain boundaries. When the fine SiC particles were added, large fraction of the SiC particles was trapped inside the grains. On the other hand, when the large SiC particles were added, most of the SiC particles were located on grain boundaries. Typically, the fraction of SiC particles located at grain boundaries was higher in the specimen prepared from $\beta$-Si3N4 than in the specimen prepared from $\alpha$-Si3N4.

  • PDF

CIGS 박막 태양전지에서의 온도 스트레스에 의한 전기적 특성 및 효율 변화 분석

  • Kim, Sun-Gon;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.327.2-327.2
    • /
    • 2014
  • CIGS박막 태양전지의 온도에 의한 효율과 전기적 특성 변화를 알아보기 위해 $25^{\circ}C$, $50^{\circ}C$, $100^{\circ}C$, $150^{\circ}C$, $200^{\circ}C$에서 각각 100시간을 노출시킨 후 전기적인 특성들을 측정하여 초기 값들과 비교하였다. 태양전지의 온도 스트레스에 의한 특성 및 파라미터들의 변화들을 확인하기 위해 Light I-V와 Minority Carrier의 Lifetime을 측정하여 비교 분석하였다. 실험에 사용한 소자의 초기 파라미터들은 $25^{\circ}C$에서 측정하였고, 단락전류 11mA, 개방전압 0.64V, 곡선인자 60.49%, Lifetime 10.7s 효율 9.17%이다. 각 온도별 노출에 대해 CIGS박막 태양전지의 효율은 $50^{\circ}C$, $100^{\circ}C$에서는 초기 값과 비슷하였고, $150^{\circ}C$, $200^{\circ}C$에서 초기 값 대비 54%, 84% 감소 특성을 보였다. 단락전류는 $50^{\circ}C$, $100^{\circ}C$, $150^{\circ}C$에서는 크게 변화하는 모습이 나타나지 않았고 $200^{\circ}C$에서 63% 감소하였다. 개방전압, 곡선인자, Lifetime은 효율과 마찬가지로 $150^{\circ}C$, $200^{\circ}C$에서 감소하는 모습이 나타났다. $150^{\circ}C$, $200^{\circ}C$에서 개방전압이 9.3%, 18.7%, 곡선인자는 45.8%, 56.3%정도 감소하였다. Lifetime은 64.4%, 80.1%정도 감소하였다. 이 실험을 통해 개방전압과 곡선인자, Minority Carrier의 Lifetime이 일정 온도부터 온도의 영향을 받아 감소하고, 그 영향으로 효율이 감소하게 되는 것을 확인하였다.

  • PDF

Formation of porous 3C-SiC thin film by anodization with UV-LED (양극산화법과 UV-LED를 이용한 다공성 3C-SiC 박막 형성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.307-310
    • /
    • 2009
  • This paper describes the formation of porous 3C-SiC by anodization. 3C-SiC thin films were deposited on p-type Si(100) substrates by APCVD using HMDS(Hexamethyildisilane: $Si_2(CH_3)_6$). UV-LED(380 nm) was used as a light source. The surface morphology was observed by SEM and the pore size was increased with increase of current density. Pore diameter of 70 $\sim$ 90 nm was achieved at 7.1 mA/cm$^2$ current density and 90 sec anodization time. FT-IR was conducted for chemical bonding of thin film and porous 3C-SiC. The Si-H bonding was observed in porous 3C-SiC around wavenumber 2100 cm$^{-1}$. PL shows the band gap enegry of thin film(2.5 eV) and porous 3C-SiC(2.7 eV).

Effect of TiC amount on Fracture Toughness of materials for glasses lens cutting (TiC함량이 안경렌즈 절삭용 재료 파괴인성에 미치는 영향)

  • Lee, Young Il
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.2
    • /
    • pp.207-210
    • /
    • 2000
  • The SiC-TiC composites materials for glasses lens cutting were fabricated by hot-pressing and annealing. The amount of TiC was 0, 10, 20, 30wt% in the mixture of ${\beta}-SiC$. The microstructure of materials for glasses lens cutting was very dependent on the TiC amount. The introduction of larger amount of TiC improved fracture toughness, optical microscope and XRD analysis of the surface of samples were carried out. An in situ-toughened microstructure, consisted of distributed elongated SiC, matrix like TiC grains was developed by using ${\beta}-SiC$. Typical hardness and fracture toughness of materials for spectacle lens cutting were 14.9 GPa and $5.7MPa{\cdot}m^{1/2}$, respectively.

  • PDF

A Study of Properties of 3C-SiC Films deposited by LPCVD with Different Films Thickness

  • Noh, Sang-Soo;Seo, Jeong-Hwan;Lee, Eung-Ahn
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.101-104
    • /
    • 2008
  • The electrical properties and microstructure of nitrogen-doped poly 3C-SiC films were studied according to different thickness. Poly 3C-SiC films were deposited by LPCVD(low pressure chemical vapor deposition) at $900^{\circ}C$ and 4 Torr using $SiH_2Cl_2$ (100 %, 35 sccm) and $C_2H_2$ (5 % in $H_2$, 180 sccm) as the Si and C precursors, and $NH_3$ (5 % in $H_2$, 64 sccm) as the dopant source gas. The resistivity of the 3C-SiC films with $1,530{\AA}$ of thickness was $32.7{\Omega}-cm$ and decreased to $0.0129{\Omega}-cm$ at $16,963{\AA}$. In XRD spectra, 3C-SiC is so highly oriented along the (1 1 1) plane at $2{\theta}=35.7^{\circ}$ that other peaks corresponding to SiC orientations are not presented. The measurement of resistance variations according to different thickness were carried out in the $25^{\circ}C$ to $350^{\circ}C$ temperature range. While the size of resistance variation decreases with increasing the films thickness, the linearity of resistance variation improved.

Effects of Hot Pressing Condition on the Properties of SiCf/SiC Composites (SiCf/SiC 복합체의 특성에 미치는 열간가압소결 조건의 영향)

  • Noviyanto, Alfian;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.335-341
    • /
    • 2011
  • Continuous SiC fiber-reinforced SiC-matrix composites ($SiC_f$/SiC) had been fabricated by electrophoretic infiltration combined with ultrasonication. Nano-sized ${\beta}$-SiC added with 12 wt% of $Al_2O_3-Y_2O_3$ additive and Tyranno$^{TM}$-SA3 fabric were used as a matrix phase and fiber reinforcement, respectively. After hot pressing at 5 different conditions, the density, microstructure and mechanical properties of $SiC_f$/SiC were characterized. Hot pressing at relatively severe conditions, such as $1750^{\circ}C$ for 1 and 2 h, resulted in a brittle fracture behavior due to the strong fiber-matrix interface in spite of their high flexural strength. On the other hand, toughened $SiC_f$/SiC composite could be achieved by hot pressing at milder condition because of the formation of weak interface in spite of the decreased flexural strength. These results proposed the importance of weak fiber-matrix interface in the fabrication of ductile $SiC_f$/SiC composite.

Characteristics of in-situ doped polycrystalline 3C-SiCthin films for M/NEMS applications (In-situ 도핑된 M/NEMS용 다결정 3C-SiC 박막의 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.325-328
    • /
    • 2008
  • This paper describes the electrical properties of poly (polycrystalline) 3C-SiC thin films with different nitrogen doping concentrations. In-situ doped poly 3C-SiC thin films were deposited by APCVD at $1200^{\circ}C$ using HMDS (hexamethyildisilane: $Si_2(CH_3)_6)$) as Si and C precursor, and $0{\sim}100$ sccm $N_2$ as the dopant source gas. The peak of SiC is appeared in poly 3C-SiC thin films grown on $SiO_2/Si$ substrates in XRD(X-ray diffraction) and FT-IR(Fourier transform infrared spectroscopy) analyses. The resistivity of poly 3C-SiC thin films decreased from $8.35{\Omega}{\cdot}cm$ with $N_2$ of 0 sccm to $0.014{\Omega}{\cdot}cm$ with 100 sccm. The carrier concentration of poly 3C-SiC films increased with doping from $3.0819{\times}10^{17}$ to $2.2994{\times}10^{19}cm^{-3}$ and their electronic mobilities increased from 2.433 to $29.299cm^2/V{\cdot}S$, respectively.

Synthesis and structure of ($C_6CH_2NH_3)_2CUCl_4and \;(NH_3C_6C_4C_2H_4C_6NH_3)CUCl_4$ (($C_6CH_2NH_3)_2CUCl_4와 \;(NH_3C_6C_4C_2H_4C_6NH_3)CUCl_4$의 합성과 구조)

  • 김지현;권석순;현준원;허영덕
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.4
    • /
    • pp.135-139
    • /
    • 2004
  • The layered organic-inorganic hybrid compounds($C_6H_5CH_2NH_3)_2CuCl_4$ and ($NH_3C_6/H_4C_2H_4_6/H_4NH_3)CuCl_4$ have been directly synthesized. From the X-ray diffraction data and the organic guest size, the orientation of the intercalated organic amine was determined. The inorganic sheets consist of $CuCl_4^{2-}$layers of comer-sharing octahedra copper chloride. The protonated organic amine was intercalated into the $CuCl_4^{2-}$layers with bilayer structure for ($C_6H_5CH_2NH_3)_2CuCl_4$ and monolayer structure for ($NH_3C_6/H_4C_2H_4_6/H_4NH_3)CuCl_4$.

Properties of Al2O3-SiCw Composites Fabricated by Three Preparation Methods (제조방법에 따른 Al2O3-SiCw 복합체의 특성)

  • Lee, Dae-Yeop;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.392-398
    • /
    • 2014
  • $Al_2O_3$-SiC composites reinforced with SiC whisker ($SiC_w$) were fabricated using three different methods. In the first, $Al_2O_3-SiC_w$ starting materials were used. In the second, $Al_2O_3-SiC_w$-SiC particles ($SiC_p$) were used, which was intended to enhance the mechanical properties by $SiC_p$ reinforcement. In the third method, reaction-sintering was used with mullite-Al-C-$SiC_w$ starting materials. After hot-pressing at $1750^{\circ}C$ and 30 MPa for 1 h, the composites fabricated using $Al_2O_3-SiC_w$ and $Al_2O_3-SiC_w-SiC_p$ showed strong mechanical properties, by which the effects of reinforcement by $SiC_w$ and $SiC_p$ were confirmed. On the other hand, the mechanical properties of the composite fabricated by reaction-sintering were found to be inferior to those of the other $Al_2O_3$-SiC composites owing to its relatively lower density and the presence of ${\gamma}-Al_2O_3$ and ${\gamma}-Al_{2.67}O_4$. The greatest hardness and $K_{1C}$ were 20.37 GPa for the composite fabricated using $Al_2O_3-SiC_w$, and $4.9MPa{\cdot}m^{1/2}$ using $Al_2O_3-SiC_w-SiC_p$, respectively, which were much improved over those from the monolithic $Al_2O_3$.

Electro-deposition and Crystallization Behaviors of Cr-C and Cr-C-P Alloy Deposits Prepared by Trivalent Chromium Sulfate Bath (황화물계 3가 크롬도금욕에서 크롬-탄소 및 크롬-탄소-인 합금도금의 전착과 결정화거동)

  • Kim, Man;Kim, Dae-Young;Park, Sang-Eon;Kwon, Sik-Chul;Choi, Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.2
    • /
    • pp.80-85
    • /
    • 2004
  • Chromium-carbon (Cr-C) and chromium-carbon-phosphorus (Cr-C-P) alloy deposits using trivalent chromium sulfate baths containing potassium formate were prepared to study their current efficiency, hardness change and phase transformations behavior with heat treatment, respectively. The current efficiencies of Cr-C and Cr-C-P alloy deposits increase with increasing current density in the range of 15-35 A/dm$^2$. Carbon content of Cr-C and phosphorous of Cr-C-P layers decreases with increasing current density, whereas, the carbon content of Cr-C-P layer is almost constant with the current density. Cr-C deposit shows crystallization at $400^{\circ}C$ and has (Cr+Cr$_{ 23}$$C_{6}$) phases at $800^{\circ}C$. Cr-C-P deposit shows crystallization at $600^{\circ}C$ and has (Cr+Cr$_{23}$ $C_{6}$$+Cr_3$P) phases at $800^{\circ}C$. The hardness of Cr-C and Cr-C-P deposits after heating treatment for one hour increase up to Hv 1640 and Hv 1540 and decrease about Hv 820 and Hv 1270 with increasing annealing temperature in the range of $400~^{\circ}C$, respectively. The hardness change with annealing is due to the order of occurring of chromium crystallization, precipitation hardening effect, softening and grain growth with temperature. Less decrease of hardness of Cr-C-P deposit after annealing above $700^{\circ}C$ is related to continuous precipitation of $Cr_{23}$ $C_{6}$ and $Cr_3$P phases which retard grain growth at the temperature.