• Title/Summary/Keyword: C(t)-integral

Search Result 141, Processing Time 0.027 seconds

Studies on Rheological Properties and Cure Behaviors of Difunctional Epoxy/Biodegradable Poly(butylene succinate) Blends (2관능성 에폭시/생분해성 폴리부틸렌 숙시네이트 블렌드의 유변학적 특성 및 경화거동에 관한 연구)

  • 박수진;김승학;이재락;민병각
    • Composites Research
    • /
    • v.15 no.6
    • /
    • pp.8-15
    • /
    • 2002
  • In this work, the effect of biodegradable poly(butylene succinate)(PBS) in difunctional epoxy(21:P) resin was investigated in terms of rheological properties, cure kinetics, thermal stabilities, and mechanical interfacial properties. Rheological properties of the blend system were measured under isothermal condition using a rheometer. Cross-linking activation energies($\textrm{E}_c$) were determined from the Arrhenius equation based on gel time and curing temperature. The $\textrm{E}_c$ was increased in the presence of 10 wt% PBS as compared with neat 2EP. From the DSC results of the blends, the cure activation energies($\textrm{E}_a$) showed a similar behavior with $\textrm{E}_c$ due to the increased intermolecular interaction between 2EP and PBS. The decomposed activation energies($\textrm{E}_t$) for the thermal stability derived from the integral method of Horowitz-Metzger equation, were also increased in 10 wt% PBS. In addition, 20 wt% PBS showed the highest critical stress intensity factor($\textrm{E}_{IC}$). which was explained by increasing the fracture toughness of the 2EP/PBS blend systems.

Specimen Thickness and Crack Depth Effects on J Testing and Crack Tip Constraint for Non-standard Specimen (시편두께 및 균열깊이 영향을 고려한 비표준시편의 J 시험법 및 구속효과의 정량화)

  • Kim, Jin-Su;Cho, Soo-Man;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1531-1538
    • /
    • 2003
  • This paper compiles solutions of plastic $\eta$ factors and crack tip stress triaxialites for standard and nonstandard fracture toughness testing specimens, via detailed three-dimensional (3-D) finite element (FE) analyses. Fracture toughness testing specimens include a middle cracked tension (M(T)) specimen, SE(B), single-edge cracked bar in tension (SE(T)) and C(T) specimen. The ligament-to-thickness ratio of the specimen is systematically varied. It is found that the use of the CMOD overall provides more robust experimental J estimation than that of the LLD, for all cases considered in the present work. Moreover, the J estimation based on the load-CMOD record is shown to be insensitive to the specimen thickness, and thus can be used for testing specimen with any thickness. The effects of in-plane and out-of-plane constraint on the crack tip stress triaxiality are also quantified, so that when experimental J value is estimated according to the procedure recommended in this paper, the corresponding crack tip stress triaxiality can be estimated. Moreover, it is found that the out-of-plane constraint effect is related to the in-plane constraint effect.

Localized particle boundary condition enforcements for the state-based peridynamics

  • Wu, C.T.;Ren, Bo
    • Coupled systems mechanics
    • /
    • v.4 no.1
    • /
    • pp.1-18
    • /
    • 2015
  • The state-based peridynamics is considered a nonlocal method in which the equations of motion utilize integral form as opposed to the partial differential equations in the classical continuum mechanics. As a result, the enforcement of boundary conditions in solid mechanics analyses cannot follow the standard way as in a classical continuum theory. In this paper, a new approach for the boundary condition enforcement in the state-based peridynamic formulation is presented. The new method is first formulated based on a convex kernel approximation to restore the Kronecker-delta property on the boundary in 1-D case. The convex kernel approximation is further localized near the boundary to meet the condition that recovers the correct boundary particle forces. The new formulation is extended to the two-dimensional problem and is shown to reserve the conservation of linear momentum and angular momentum. Three numerical benchmarks are provided to demonstrate the effectiveness and accuracy of the proposed approach.

Localized particle boundary condition enforcements for the state-based peridynamics

  • Wu, C.T.;Ren, Bo
    • Interaction and multiscale mechanics
    • /
    • v.7 no.1
    • /
    • pp.525-542
    • /
    • 2014
  • The state-based peridynamics is considered a nonlocal method in which the equations of motion utilize integral form as opposed to the partial differential equations in the classical continuum mechanics. As a result, the enforcement of boundary conditions in solid mechanics analyses cannot follow the standard way as in a classical continuum theory. In this paper, a new approach for the boundary condition enforcement in the state-based peridynamic formulation is presented. The new method is first formulated based on a convex kernel approximation to restore the Kronecker-delta property on the boundary in 1-D case. The convex kernel approximation is further localized near the boundary to meet the condition that recovers the correct boundary particle forces. The new formulation is extended to the two-dimensional problem and is shown to reserve the conservation of linear momentum and angular momentum. Three numerical benchmarks are provided to demonstrate the effectiveness and accuracy of the proposed approach.

A Distance Relaying Algorithm Based on the Integral Approximation of a Differential Equation (적분근사를 이용한 거리 계전 알고리즘)

  • Jung, B.T.;Seo, J.C.;Cho, K.R.;Park, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.180-182
    • /
    • 1993
  • A distance protection algorithm for detecting faults at power transmission lines is presented in this paper. The algorithm is based on the differential equation related to the voltage and the current at an equivalent circuit of a transmission line which is composed of the lumped resistance and inductance. The presented integration method has high performance at though the fault voltage and the current are heavily distorted with the DC offset and harmonics which occurred at transient states after faults.

  • PDF

ON SUBCLASSES OF ANALYTIC FUNCTIONS ASSOCIATED WITH STRUVE FUNCTIONS

  • Frasin, B.A.;Al-Hawary, Tariq;Yousef, Feras;Aldawish, I.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.99-110
    • /
    • 2022
  • The main object of this paper is to provide necessary and sufficient conditions for the generalized Struve functions of first kind to be in the classes 𝒮(k, λ) and 𝒞(k, λ). Furthermore, we give conditions for the integral operator 𝓛(m, c, z) = ∫z0(2 - up(t))dt to be in the class 𝒞*(k, λ). Several corollaries and consequences of the main results are also considered.

THE HOMOLOGY REGARDING TO E-EXACT SEQUENCES

  • Ismael Akray;Amin Mahamad Zebari
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.21-38
    • /
    • 2023
  • Let R be a commutative ring with identity. Let R be an integral domain and M a torsion-free R-module. We investigate the relation between the notion of e-exactness, recently introduced by Akray and Zebari [1], and generalized the concept of homology, and establish a relation between e-exact sequences and homology of modules. We modify some applications of e-exact sequences in homology and reprove some results of homology with e-exact sequences such as horseshoe lemma, long exact sequences, connecting homomorphisms and etc. Next, we generalize two special drived functor T or and Ext, and study some properties of them.

Characterization of SiC nanowire synthesize by Thermal CVD

  • Jeong, Min-Uk;Kim, Min-Guk;Song, U-Seok;Jeong, Dae-Seong;Choe, Won-Cheol;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.74-74
    • /
    • 2010
  • One-dimensional nanosturctures such as nanowires and nanotube have been mainly proposed as important components of nano-electronic devices and are expected to play an integral part in design and construction of these devices. Silicon carbide(SiC) is one of a promising wide bandgap semiconductor that exhibits extraordinary properties, such as higher thermal conductivity, mechanical and chemical stability than silicon. Therefore, the synthesis of SiC-based nanowires(NWs) open a possibility for developing a potential application in nano-electronic devices which have to work under harsh environment. In this study, one-dimensional nanowires(NWs) of cubic phase silicon carbide($\beta$-SiC) were efficiently produced by thermal chemical vapor deposition(T-CVD) synthesis of mixtures containing Si powders and hydrocarbon in a alumina boat about $T\;=\;1400^{\circ}C$ SEM images are shown that the temperature below $1300^{\circ}C$ is not enough to synthesis the SiC NWs due to insufficient thermal energy for melting of Si Powder and decomposition of methane gas. However, the SiC NWs are produced over $1300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is about $1400^{\circ}C$ with an average diameter range between 50 ~ 150 nm. Raman spectra revealed the crystal form of the synthesized SiC NWs is a cubic phase. Two distinct peaks at 795 and $970\;cm^{-1}$ over $1400^{\circ}C$ represent the TO and LO mode of the bulk $\beta$-SiC, respectively. In XRD spectra, this result was also verified with the strongest (111) peaks at $2{\theta}=35.7^{\circ}$, which is very close to (111) plane peak position of 3C-SiC over $1400 ^{\circ}C$ TEM images are represented to two typical $\beta$-SiC NWs structures. One is shown the defect-free $\beta$-SiC nanowire with a (111) interplane distance with 0.25 nm, and the other is the stacking-faulted $\beta$-SiC nanowire. Two SiC nanowires are covered with $SiO_2$ layer with a thickness of less 2 nm. Moreover, by changing the flow rate of methane gas, the 300 sccm is the optimal condition for synthesis of a large amount of $\beta$-SiC NWs.

  • PDF

Low Temperature Effects on the Strength and Fracture Toughness of Membrane for LNG Storage Tank (LNG 저장탱크용 멤브레인재(STS 304강)의 강도 및 파괴인성에 미치는 저온효과)

  • Kim, Jeong-Gyu;Kim, Cheol-Su;Jo, Dong-Hyeok;Kim, Do-Sik;Yun, In-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.710-717
    • /
    • 2000
  • Tensile and fracture toughness tests of the cold-rolled STS 304 steel plate for membrane material of LNG storage tank were performed at wide range of temperatures, 11 IK(boiling point of LNG), 153K , 193K and 293K(room temperature). Tensile strength significantly increases with a decrease in temperature, but the yield strength is relatively insensitive to temperature. Elongation at 193K abruptly decreases by 50% of that at 293K, and then decreases slightly in the temperature range of 193K to 111K. Strain hardening exponents at low temperatures are about four times as high as that at 293K. Elastic-plastic fracture toughness($J_c$) and tearing modulus($T_{mat}$) tend to decrease with a decrease in temperature. The $J_c$ values are inversely related to effective yield strength in the temperature range of 111K to 293K. These phenomena result from a significant increase in the amount of transformed martensite in low temperature regions.

Two-mode Fiber with a Reduced Mode Overlap for Uncoupled Mode-division Multiplexing in C+L Band

  • Hong, Seongjin;Choi, Kyoungyeon;Lee, Yong Soo;Oh, Kyunghwan
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.233-240
    • /
    • 2018
  • We proposed a two-mode fiber (TMF) design that can effectively reduce the mode overlap between $LP_{01}$ and $LP_{11}$ modes by using a W-shaped index profile core structure, which is a primary concern in uncoupled mode division multiplexing (MDM). TMF has a three-layered core structure; central circular core, inner cladding, and outer ring core. We confirmed that in an optimal structure the $LP_{01}$ mode was highly confined to the central core while the $LP_{11}$ mode was guided along the outer ring core to result in a minimum overlap integral. We used a full-vectorial finite element method to estimate effective index, differential group delay (DGD), confinement loss, chromatic dispersion, and mode overlap controlling the parameters of the W-shaped structure. The optimized W-profile fiber provided optical characteristics within the ITU-T recommended standards over the entire C+L band.