• Title/Summary/Keyword: C&D waste

Search Result 269, Processing Time 0.024 seconds

Adsorption Characteristics of Waste-Paint Activated Carbon (廢 페인트 活性炭의 吸着特性)

  • 박정호;박승조
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.9-14
    • /
    • 2000
  • Comparing the adsorption characteristics of coconut shell activated carbon (CSAC) and waste paint activated carbon (WPAC), Freundlich adsorption isotherms of alkylbenzene sulfonate (ABS) obtained from the secondary treatment water of H company and effluent of D company were estimated q=23.12 $C^{0.42}$ , q=18.32 $C^{0.38}$ with WPAC and $q=36.76C^{1.37}$ /, q=26.67 $C^{0.42}$ with CSAC respectively. In the case of H company, breakthrough time of the ABS using CSAC by continuous experiment was estimated 680 minute md that of WPAC was 610 minute. In the case of D company effluent, CSAC was estimated 720 minute, and that of WPAC was estimated 640 minute to reach the breakthrough. From the above results, it is possible to replace the coco-nut shell activated carbon with wasted paint activated carbon.

  • PDF

The method for the classification according to their kinds and the estimation of unit generation rate for promoting recycling of construction and demolition(c&d) debris (건설폐기물 재활용촉진을 위한 종류별 분류 및 발생원단위 산정 방안)

  • Lee, Hi Sun;Kim, Dong Sik
    • Journal of the Society of Disaster Information
    • /
    • v.4 no.1
    • /
    • pp.86-100
    • /
    • 2008
  • It is needed to classify the kinds of construction and demolition(c&d) debris to 6 catagories of waste concrete, waste asphalt concrete, waste wood, scraps, combustible waste and incombustible waste in order to properly do a separate discharge and to estimate unit generation rate in construction site. Also, in this case, the unit treating cost for mixed wastes should be applied with the unit treating cost for combustible waste. The construction standard materials estimation data is used for basic data for estimating unit generation rate. The mixed wastes in this data should be classified to waste wood, combustible waste and incombustible waste, and their ratio is obtained by using the unit generation rate of Asia Pacific Environment and Management Institute and Seoul Metropolitan Development Institute. The waste amounts generated from newly-built construction can be obtained from multiplying the loss rate by the amount of materials used from construction standard estimation data. Also, those from dismantling construction can be obtained by subtracting waste amount generated during newly-built construction from total input amount of materials in newly-built construction. Those in two cases can be used in construction site. It can be used for estimating the amount generated and establishing the treating plan in the case of setting up the policy of waste management and doing the environment impact assessment.

  • PDF

Evaluation of Fermentation Extinction Rate of Food Waste according to the Various Types of Wood Chip with Different Pore Structures (목질세편 세공구조에 따른 음식물쓰레기의 발효·소멸효율 평가)

  • Oh, Jeong-Ik;Kim, Hyo-Jin
    • Land and Housing Review
    • /
    • v.3 no.3
    • /
    • pp.299-305
    • /
    • 2012
  • Various types of bio wood chip for fermentation-extinction of food waste was investigated by comparing their different pore structure with the performance of weight loss rate and microbial activity. The fermentation-extinction of food waste with bio wood chip was examined by adding 700~1,500g of food waste every day during 15 days to the fermentation-extinction reactor with condition of $30{\sim}50^{\circ}C$ temperature and 30~70% humidity, where 1,500g of bio wood chips were existed. The bio wood chips used in this experiment were categorized into 4 different types; microbial-mixing type(A biochip), macro pore type(B biochip) under $2{\mu}m$ of pore size, micro pore type of wood-chips(C biochip) under $0.1{\mu}m$ of pore size, viscous & sticky type(D biochip). As a result, A, B, C, D bio wood chip exhibited 85%, 63%, 92%, 73% weight loss of food waste with fermentation-extinction. The maximum weight loss of food waste was obtained at the fermentation-extinction experiments by using C bio wood chip. On the other hands, the maximum ratio of ATP to COD and TN was obtained from $3.00{\times}10^{-10}$ and $2.31{\times}10^{-11}$ in the case of C bio wood chip, comparing with other types of bio wood chip. Consequently, the performance of weight loss rate was affected with the micro pore structure of bio wood chip which have an advantage of extensive microbial activity space in the fermentation-extinction of food waste.

Recycling Waste Paste from Concrete for Solidifying Agent (콘크리트 폐기물에서 분리된 페이스트를 활용한 고화재 기술개발 기초연구)

  • Mun, Young-Bum;Choi, Hyun-Kuk;Kim, Jae-Young;Lee, Jea-Hyung;Chung, Chul-Woo;Kim, Ji-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.269-277
    • /
    • 2017
  • In this work, as a preliminary experimental works, which focuses on utilizing separated pastes from activated (or radioactive) concrete as solidifying agents for radioactive waste immobilization, were performed. It was found that density of hydrated cement paste, which was lower than that of ordinary portland cement, increased as temperature for heat treatment increased. Highest compressive strength was observed with the specimens that was heat treated at $600^{\circ}C$. However, heat treatment over $700^{\circ}C$ showed higher CaO content that caused higher heat of hydration after in contact with water, lows of workability, and lower strength. Based on experimental results, it is suggested that $600^{\circ}C$ heat treatment is more appropriate for waste cement paste to be used as a solidifying agent.

Decomposition of Liquid Wastes(Waste Oil & Solvents) under High Temperature Conditions (산업단지 발생 액상폐기물(폐유와 폐유기용제)의 고온연소 특성)

  • Kim, Min-Choul;Lee, Jae-Jeong;Suk, Min-Kwang;Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3761-3767
    • /
    • 2009
  • This study was investigated to determine the combustion characteristics, decomposition efficiency, and the flue gas concentrations after combustion in the high temperature reactor($1,250{\sim}1,400^{\circ}C$, 1 atm) for the liquid wastes(waste oil and waste solvent) generated from the industrial complex. The concentration of nitrogen oxide(NOx) is decreased and the synthetic gas is increased when the mass ratio of $O_2$/waste is about 1.53 because the reaction condition was changed to reduction state. And BTEXs(benzene, toluene, ethylbenzene, xylene) are decomposed more than 99.99%. If the highly concentrated liquid waste (waste oil and waste solvent) is treated under the operating conditions suggested by this study, our treatment method for the liquid waste was found to be proper because of the contaminants emission concentration is very low. In addition, the synthetic gas after combustion can be used as an alternative fuel.

Usage potential of recycled aggregates in mortar and concrete

  • Yaragal, Subhash C.;Muhammad, Roshan A.K.
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.201-219
    • /
    • 2017
  • With the rapid growth in construction sector, it becomes all the more important to assess the amount of Construction and Demolition (C&D) waste being generated and analyze the practices needed to handle and use this waste before final disposal. This serves waste management and disposal issues, paving way to waste utilization in construction industry from the sustainability point of view. C&D waste constitutes a major bulk of total solid waste produced in the world. In this work, an attempt is made to study the performance of concrete using water soaked Recycled Coarse Aggregates (RCA) in replacement levels of 0%, 25%, 50%, 75% and 100% to Natural Coarse Aggregates (NCA). Experiments were designed and conducted to study the performance of RCA based concrete. Further suitable performance enhancement techniques to RCA based concrete were attempted, to achieve compressive strength at least equal to or more than that for no RCA based concrete (control concrete). Performance enhancement study is reported here for 50% and 100% RCA based concretes. All four techniques attempted have given favorable results encouraging use of RCA based concretes with full replacement levels, to adopt RCA based concrete in structural applications, without any kind of concern to the stake holder. Further attempts have also been made to use Recycled Fine Aggregates (RFA) with appropriate modifications to serve as fine aggregates in mortar and concrete. Using RFA blended with river sand fractions as well as RFA with Iron Ore Tailings (IOT) fractions, have given good results to serve as fine aggregates to the extent of 100% replacement levels in mortars and concretes.

Improvement Strategy for Demolition Industry through a Analysis of Domestic Demolition Technique and Situation (국내해체기술 및 현황분석을 통한 해체산업의 발전방향)

  • Kim, Chang-Hak;Kim, Hyo-Jin;Kang, Leen Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2D
    • /
    • pp.143-151
    • /
    • 2010
  • Currently, one of the most interested things at home and abroad country will be an eco-friendly construction. Among these, one of the most important elements will be the recycle and reuse of construction and demolition waste. Because construction waste is generated the most at the demolition phase, it is important to minimize the quantity of the demolition waste at the phase. And it is also important to develop a system to manage rightly the generated demolition waste. But in the domestic country, a research for this has hardly been carried out. In recent, the government has realized its importance and is making a research to improve demolition technique and is preparing a research to make a raw for deconstruction. Therefore, this study examined its application situation and importance by analyzing the trend of demolition technique used in the domestic industry. Also this study carried out a survey for situation analysis of the demolition industry. This study suggested items needed for the development of demolition technique, demolition design and reduction of C&D waste through a survey results and a situation analysis.