Annual Conference on Human and Language Technology
/
2018.10a
/
pp.291-295
/
2018
한국어는 교착어적 특성이 강한 언어로, 교착어적 특성이 없는 영어 등의 언어와 달리 형태소의 수에 따라 조합 가능한 어절의 수가 매우 많으므로 어절 단위의 처리가 매우 어렵다. 따라서 어절을 더 작은 단위로 분해하는 전처리 단계가 요구되는데, 형태소 분석이 이를 위해 주로 사용되었다. 하지만 지도학습 방법을 이용한 형태소 분석 시스템은 다량의 학습 데이터가 요구되고, 비지도학습 방법을 이용한 형태소 분석은 성능에 큰 하락을 보인다. Byte Pair Encoding은 데이터를 압축하는 알고리즘으로, 이를 자연어처리 분야에 응용하면 비지도학습 방법으로 어절을 더 작은 단위로 분해할 수 있다. 본 연구에서는 한국어에 Byte Pair Encoding을 적용하는 두 가지 방법인 음절 단위 처리와 자모 단위 처리의 성능 및 특성을 정량적, 정성적으로 분석하는 방법을 제안하였다. 또한, 이 방법을 세종 말뭉치에 적용하여 각각의 알고리즘을 이용한 어절 분해를 실험하고, 그 결과를 어절 분해 정확도, 편향, 편차를 바탕으로 비교, 분석하였다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.115-119
/
2018
다중 문서 제목 추출은 하나의 주제를 가지는 다중 문서에 대한 제목을 추출하는 것을 말한다. 일반적으로 다중 문서 제목 추출에서는 다중 문서 집합을 단일 문서로 본 다음 키워드를 제목 후보군으로 추출하고, 추출된 후보를 나열하는 형식의 연구가 많이 진행되어져 왔다. 하지만 이러한 방법은 크게 두 가지의 한계점을 가지고 있다. 먼저, 다중 문서를 단순히 하나의 문서로 보는 방법은 전체적인 주제를 반영한 제목을 추출하기 어렵다는 문제점이 있다. 다음으로, 키워드를 조합하는 형식의 방법은 키워드의 단위를 찾는 방법에 따라 추출된 제목이 자연스럽지 못하다는 한계점이 있다. 따라서 본 논문에서는 이 한계점들을 보완하기 위하여 단어 관련성 추정과 Byte Pair Encoding을 이용한 요약 기반의 다중 뉴스 기사 제목 추출 방법을 제안한다. 평가를 위해서는 자동으로 군집된 총 12개의 주제에 대한 다중 뉴스 기사 집합을 사용하였으며 전문 교육을 받은 연구원들이 정성평가를 진행하여 5점 만점 기준 평균 3.68점을 얻었다.
Objectives : We propose a method to disassemble Traditional East Asian Medicine herbal formulas using machine learning. Methods : After creating a model using Byte Pair Encoding(BPE) and G-Score, the model was trained with training data. Afterwards, the learned model was applied to the test data, of which the results were compared with expert opinion. Results : The results acquired through the model were not significantly different from those of modern expert opinions. However, there were cases where the meaning was partially unclear, while there were cases where new knowledge could be obtained through the disassembling process. Conclusions : It is expected that disassembling herbal formulas through the proposed method in this study will help save resources required to understand complex ones.
Kim, Yeonsu;Ko, Younghun;Euom, Ieckchae;Kim, Kyungbaek
Journal of the Korea Institute of Information Security & Cryptology
/
v.30
no.4
/
pp.669-677
/
2020
As the number of Internet users exploded, attacks on the web increased. In addition, the attack patterns have been diversified to bypass existing defense techniques. Traditional web firewalls are difficult to detect attacks of unknown patterns.Therefore, the method of detecting abnormal behavior by artificial intelligence has been studied as an alternative. Specifically, attempts have been made to apply natural language processing techniques because the type of script or query being exploited consists of text. However, because there are many unknown words in scripts and queries, natural language processing requires a different approach. In this paper, we propose a new classification model which uses byte pair encoding (BPE) technology to learn the embedding vector, that is often used for web attack payloads, and uses an attention mechanism-based Bi-GRU neural network to extract a set of tokens that learn their order and importance. For major web attacks such as SQL injection, cross-site scripting, and command injection attacks, the accuracy of the proposed classification method is about 0.9990 and its accuracy outperforms the model suggested in the previous study.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.535-540
/
2022
Out of Vocabulary(OOV) 문제는 인공신경망 기계번역(Neural Machine Translation, NMT)에서 빈번히 제기되어 왔다. 이를 해결하기 위해, 기존에는 단어를 효율적인 압축할 수 있는 Byte Pair Encoding(BPE)[1]이 대표적으로 이용되었다. 하지만 BPE는 빈도수를 기반으로 토큰화가 진행되는 결정론적 특성을 취하고 있기에, 다양한 문장에 관한 일반화된 분절 능력을 함양하기 어렵다. 이를 극복하기 위해 최근 서브 워드를 정규화하는 방법(Subword Regularization)이 제안되었다. 서브 워드 정규화는 동일한 단어 안에서 발생할 수 있는 다양한 분절 경우의 수를 고려하도록 설계되어 다수의 실험에서 우수한 성능을 보였다. 그러나 분류 작업, 특히 한국어를 대상으로 한 분류에 있어서 서브 워드 정규화를 적용한 사례는 아직까지 확인된 바가 없다. 이를 위해 본 논문에서는 서브 워드 정규화를 대표하는 두 가지 방법인 유니그램 기반 서브 워드 정규화[2]와 BPE-Dropout[3]을 이용해 한국어 분류 문제에 대한 서브 워드 정규화의 효과성을 제안한다. NMT 뿐만 아니라 분류 문제 역시 단어의 구성성 및 그 의미를 파악하는 것은 각 문장이 속하는 클래스를 결정하는데 유의미한 기여를 한다. 더불어 서브 워드 정규화는 한국어의 문장 구성 요소에 관해 폭넓은 인지능력을 함양할 수 있다. 해당 방법은 본고에서 진행한 한국어 분류 과제 실험에서 기존 BPE 대비 최대 4.7% 높은 성능을 거두었다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.197-202
/
2019
토큰화는 입력 텍스트를 더 작은 단위의 텍스트로 분절하는 과정으로 주로 기계 학습 과정의 효율화를 위해 수행되는 전처리 작업이다. 현재까지 자연어 처리 분야 과업에 적용하기 위해 다양한 토큰화 방법이 제안되어 왔으나, 주로 텍스트를 효율적으로 분절하는데 초점을 맞춘 연구만이 이루어져 왔을 뿐, 한국어 데이터를 대상으로 최신 기계 학습 기법을 적용하고자 할 때 적합한 토큰화 방법이 무엇일지 탐구 해보기 위한 연구는 거의 이루어지지 않았다. 본 논문에서는 한국어 데이터를 대상으로 최신 기계 학습 기법인 전이 학습 기반의 자연어 처리 방법론을 적용하는데 있어 가장 적합한 토큰화 방법이 무엇인지 알아보기 위한 탐구 연구를 진행했다. 실험을 위해서는 대표적인 전이 학습 모형이면서 가장 좋은 성능을 보이고 있는 모형인 BERT를 이용했으며, 최종 성능 비교를 위해 토큰화 방법에 따라 성능이 크게 좌우되는 과업 중 하나인 기계 독해 과업을 채택했다. 비교 실험을 위한 토큰화 방법으로는 통상적으로 사용되는 음절, 어절, 형태소 단위뿐만 아니라 최근 각광을 받고 있는 토큰화 방식인 Byte Pair Encoding (BPE)를 채택했으며, 이와 더불어 새로운 토큰화 방법인 형태소 분절 단위 위에 BPE를 적용하는 혼합 토큰화 방법을 제안 한 뒤 성능 비교를 실시했다. 실험 결과, 어휘집 축소 효과 및 언어 모델의 퍼플렉시티 관점에서는 음절 단위 토큰화가 우수한 성능을 보였으나, 토큰 자체의 의미 내포 능력이 중요한 기계 독해 과업의 경우 형태소 단위의 토큰화가 우수한 성능을 보임을 확인할 수 있었다. 또한, BPE 토큰화가 종합적으로 우수한 성능을 보이는 가운데, 본 연구에서 새로이 제안한 형태소 분절과 BPE를 동시에 이용하는 혼합 토큰화 방법이 가장 우수한 성능을 보임을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.