• Title/Summary/Keyword: Butyric acid

Search Result 639, Processing Time 0.029 seconds

Biohydrogen Production from Sugar Manufacturing Wastewater and Analysis of Microbial Diversity (제당폐수를 이용한 수소생산과 미생물의 군집해석)

  • Lee, Heesu;Lee, Tae-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.3
    • /
    • pp.41-51
    • /
    • 2012
  • Biohydrogen production and analysis of microbial community were attempted from the sugar manufacturing wastewater with anaerobic fermentation process. Addtion of nutrients ($N{\cdot}P$) into sugar manufacturing wastewater stimulates hydrogen production from 9.53 to $26.67m{\ell}$ $H_2/g$ COD. Butyric acid, acetic acid, lactic acid, and propionic acid were detected in the sample of the anaerobic fermentation process. Butyric acid/Acetic acid(B/A) ratio was increased 0.50 to 0.92 according to the nutrients addtion into the wastewater. Microbial community was analyzed as Clostridium sp. in the phylum of Firmicutes and Klebsiella sp., Erwinia sp., and enterobacter sp. of the class of $\gamma$-Proteobacteria. As the improvement of hydrogen production, Erwinia sp. was decreased and Klebsiella sp. was increased.

Minimum Autoignition Temperature Behavior(MAITB) of the Flammable Binary Systems (가연성 이성분계의 최소자연발화온도 거동(MAITB))

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.70-75
    • /
    • 2008
  • The values of the AIT(Autoignition temperature) for fire and explosion protection are normally the lowest reported. The minimum autoignition temperature behavior(MAITB) of flammable liquid mixtures is exhibited when the AIT of mixture is below the AIT of the individual components. The MAITB is an interesting experimental features, which can be significant from the perspective of industrial safety. In this study, the AITs of m-xylene+n-butyric acid and ethylbenzene+n-butanol systems were measured using ASTM E659-78 apparatus. The AITs of m-xylene, n-butyric acid, ethylbenzene and n-butanol which constituted two binary systems were $587^{\circ}C$, $510^{\circ}C$, $475^{\circ}C$ and $340^{\circ}C$ respectively. The m-xylene+n-butyric acid system is exhibited MAITB at 0.3 mole fraction of m-xylene, and its minimum autoignition temperature was $460^{\circ}C$.

Synthetic studies of 2,2'-(ethylenediimino) and 2,2'-(thioureido)-di-1-carboxylic acids as the antitubercular and the other bacteriostatic agents (2,2'-(ethylenediimino) and 2,2'-(thioureido)-di-1-carboxylic acids의 항결핵성및 항균성화합물로서의 합성연구)

  • Chough, Yun-Sung
    • YAKHAK HOEJI
    • /
    • v.10 no.2_3
    • /
    • pp.8-11
    • /
    • 1966
  • 항인결핵균성및 streptomycin, isoniazid및 para-aminosalicylic acid에 대한 내성인결핵균주에 현저한 항균작용 있는 dextro-2,2'-(ethylenediimino)-di-1- butanol(Ethambutol) 계열 및 thioureido(-NHCSNH-) 함유화 합물 계열인 2,2'-(ethylenediimino)-di-1-butyric acid및 2,2'-(thioureido)-di-1-butyric acid를 합성했으며 이들 약물의 구조와 작용간의 상호관계를 설명코저 이들 화합물과 류사한 구조인 2,2'-(thioureido)-di-acetic acid를 합성했기에 보고함.

  • PDF

Studies on the Organic Acid in Some Species of Marine Alage (해조류의 유기산에 관한 연구)

  • 김영진
    • Journal of the Korean Home Economics Association
    • /
    • v.9 no.2
    • /
    • pp.30-33
    • /
    • 1971
  • 1. The present paper deals with the composition of organic acid in Porphyra tenera, roasted Porphyra tenera and Undaria pinnatifida. 2. There are little differences in the composition of organic acids among three of them, Porphyra tenera, roasted Porphyra tenera and Ucdaria pinnatifida. Butyric, propionic, acetic, fumaric, succinic, lactic, oxalic, malic, citric and unknown two acids were identifled by silica gel colcumn chromatography. 3. All of volatile organic acid, namely butyric, propionic and acetic acid in Porphyra tenera were decreased during the raosting.

  • PDF

Effect of Butyric Acid on Performance, Gastrointestinal Tract Health and Carcass Characteristics in Broiler Chickens

  • Panda, A.K.;Rama Rao, S.V.;Raju, M.V.L.N.;Shyam Sunder, G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.7
    • /
    • pp.1026-1031
    • /
    • 2009
  • An experiment was conducted to study the effect of graded levels of butyric acid (butyrate) on performance, gastrointestinal tract health and carcass characteristics in young broiler chickens. Control starter (0-3 wk) and finisher (4-5 wk) diets were formulated to contain 2,900 kcal ME/kg and 22% CP, and 3,000 kcal ME/kg and 20% CP, respectively. Subsequently, four other experimental diets were formulated to contain 0.05% antibiotic (furazolidone) or 0.2, 0.4 and 0.6% butyric acid. Each diet was fed at random to 8 replicates of 6 chicks each throughout the experimental period (0-5 wk). The results showed that 0.4% butyrate in the diet was similar to antibiotic in maintaining body weight gain and reducing E. coli numbers but superior for feed conversion ratio. No added advantage on these parameters was obtained by enhancing the concentration of butyrate from 0.4 to 0.6% in the diet. Feed intake and mortality were not influenced by the dietary treatments. A reduction in pH of the upper GI tract (crop, proventiculus and gizzard) was observed by inclusion of butyrate in the diets of broilers compared to either control or antibiotic-fed group. Butyrate at 0.4% was more effective in reducing the pH than 0.2% butyrate. Within the lower GI tract, 0.4 and 0.6% butyrate was effective in lowering pH in the duodenum, but no effect was found in either the jejunum or ileum. The villus length and crypt depth in the duodenum increased significantly in all the butyrate treated diets irrespective of the level tested. Carcass yield was higher and abdominal fat content was lower significantly in all the butyrate treatment groups compared to the control or antibiotic group. From these findings, it is concluded that 0.4% butyric acid supplementation maintained performance, intestinal tract health, and villi development and carcass quality in broiler chickens.

Ammonia Inhibition on Anaerobic Digestion of Butyric Acid and Improvement Effect by Magnetite Particles (부티르산 혐기성 소화에 대한 암모니아 저해영향과 자철석가루 투입을 통한 개선 효과 조사)

  • Jung, Sungyun;Kim, Minjae;Lee, Joonyeob
    • Journal of Environmental Science International
    • /
    • v.31 no.2
    • /
    • pp.141-148
    • /
    • 2022
  • In this study, the inhibition of ammonia on anaerobic digestion of butyric acid was evaluated and the potential alleviating effects of such ammonia inhibition by the addition of magnetite particles were investigated. Independent anaerobic batch tests fed with butyric acid as a sole organic source were conducted in twenty 60-mL glass bottles with 10 different treatment conditions, comprising ammonia: 0.5, 2.0, 4.0, 6.0, and 7.0 g total ammonia nitrogen (TAN)/L and magnetite particles: 0 mM and 20 mM. The increase in ammonia concentration did not cause significant inhibition on methane yield; however, a significant inhibition on lag time and specific methane production rate was observed. The IC50 in the control treatments (without magnetite addition) was estimated as 6.2654 g TAN/L. A similar inhibition trend was observed in magnetite-added treatments; however, the inhibition effect by ammonia was significantly alleviated in lag time and specific methane production rate when compared to those in the control treatments. The lag time was shortened by 1.6-46.3%, specific methane production rate was improved by 6.0-69.0%. In the magnetite-added treatments, IC50 was estimated as 8.5361 g TAN/L. This study successfully demonstrated the potential of magnetite particles as an enhancer in anaerobic digestion of butyric acid under conditions of ammonia stress.

Structural Basis for Recognition of L-lysine, L-ornithine, and L-2,4-diamino Butyric Acid by Lysine Cyclodeaminase

  • Min, Kyungjin;Yoon, Hye-Jin;Matsuura, Atsushi;Kim, Yong Hwan;Lee, Hyung Ho
    • Molecules and Cells
    • /
    • v.41 no.4
    • /
    • pp.331-341
    • /
    • 2018
  • L-pipecolic acid is a non-protein amino acid commonly found in plants, animals, and microorganisms. It is a well-known precursor to numerous microbial secondary metabolites and pharmaceuticals, including anticancer agents, immunosuppressants, and several antibiotics. Lysine cyclodeaminase (LCD) catalyzes ${\beta}$-deamination of L-lysine into L-pipecolic acid using ${\beta}$-nicotinamide adenine dinucleotide as a cofactor. Expression of a human homolog of LCD, ${\mu}$-crystallin, is elevated in prostate cancer patients. To understand the structural features and catalytic mechanisms of LCD, we determined the crystal structures of Streptomyces pristinaespiralis LCD (SpLCD) in (i) a binary complex with $NAD^+$, (ii) a ternary complex with $NAD^+$ and L-pipecolic acid, (iii) a ternary complex with $NAD^+$ and L-proline, and (iv) a ternary complex with $NAD^+$ and L-2,4-diamino butyric acid. The overall structure of SpLCD was similar to that of ornithine cyclodeaminase from Pseudomonas putida. In addition, SpLCD recognized L-lysine, L-ornithine, and L-2,4-diamino butyric acid despite differences in the active site, including differences in hydrogen bonding by Asp236, which corresponds with Asp228 from Pseudomonas putida ornithine cyclodeaminase. The substrate binding pocket of SpLCD allowed substrates smaller than lysine to bind, thus enabling binding to ornithine and L-2,4-diamino butyric acid. Our structural and biochemical data facilitate a detailed understanding of substrate and product recognition, thus providing evidence for a reaction mechanism for SpLCD. The proposed mechanism is unusual in that $NAD^+$ is initially converted into NADH and then reverted back into $NAD^+$ at a late stage of the reaction.

Influence of Alkyl Chain Length on Fragmentations and Ion-Molecule Reactions of Ionized c-C6H11-(CH2)nCO2H

  • Choi, Sung-Seen;So, Hun-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1711-1716
    • /
    • 2005
  • Fragmentations and ion-molecule reactions of ionized cyclohexane propionic acid and cyclohexane butyric acid were studied using FTMS and theoretical calculations. The difference in bond dissociation depending on the aliphatic chain length was investigated and mechanisms for the possible rearrangements depending on the aliphatic carbon length were suggested. The most abundant fragment ion of the ionized cyclohexane propionic acid was c-$C_6H_{11}CH_2\;^+$ formed from the molecular ion by the direct C-C bond cleavage, while that of the ionized cyclohexane butyric acid was c-$C_6H_9C(OH)=OH^+$ formed by rearrangement of the molecular ion from the acid to diol form and loss of propyl radical. Stabilities of the radical and distonic ions of $C_nH_{2n}O^{+\bullet}$ formed from the molecular ion were compared. Protonated molecules were dissociated into smaller ions by losing one or two water molecules. The $[nM + H]^+$, $[nM + H - H_2O]^+$, and $[nM + H - 2H_2O]^+$ with n = 2 and 3 were generated by solvation with the neutral molecules in the ICR cell at long ion trapping time.

Characteristics of Red Pepper Paste by Using Germinated Barley with Increased γ-Amino Butyric Acid

  • Shin, Myung-Gon;Lee, Gyu-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.2
    • /
    • pp.150-156
    • /
    • 2011
  • Germinated barley, instead of glutinous rice, was used to make health-enhancing fermented red pepper paste. The proximate components of commercial glutinous rice red pepper paste (CGRPP) and germinated barley red pepper paste (GBRPP) were analyzed during fermentation. The sensory characteristics and ${\gamma}$-amino butyric acid (GABA) contents of CGRPP and GBRPP were evaluated. The contents of ${\beta}$-glucan and GABA showed the highest value after 48 hrs of germination. During the fermentation, the contents of GABA in GBRPP increased up to 28 days and then decreased. During sensory evaluation, the consumer liked the GBRPP more than CGRPP. The GABA contents were increased during fermentation and GABA contents of GBRPP were twice as much as that of CGRPP. These results suggest that the GBRPP can have consumer acceptance for its health benefits and taste and can therefore become commercialized.

Effects and Optimization of Gamma-Amino Butyric Acid (GABA) Production Process using Glutamate Decarboxylase (GAD) (Glutamate Decarboxylase (GAD)를 이용한 Gamma-Amino Butyric Acid (GABA) 생산 및 최적화)

  • Kim, Eui Jin;Lee, Jung-Heon
    • KSBB Journal
    • /
    • v.29 no.6
    • /
    • pp.426-431
    • /
    • 2014
  • pH controlled batch reactor and bubble column reactors have been developed in this research. They were used to produce high concentration of GABA and to determine optimal pH for GABA production. Glutamate decarboxylase (GAD) was isolated from recombinant E. coli and used for GABA production from monosodium glutamate (MSG). pH control was inevitable because the pH increased with MSG consumption. GAD showed highest activity at acidic conditions at pH 5.5 but the optimal pH for GABA production was pH 6.0. When 1.5 mole of MSG was used as reactant, the 1.05 mole of GABA was produced after 10 hrs batch reaction. Using bubble column reactors, 80 % of MSG was converted to GABA for 6 hrs reaction and 1.2 mole of GABA was produced.