• Title/Summary/Keyword: Butyl acetate

Search Result 143, Processing Time 0.028 seconds

Analysis of Aroma Patterns in Muskmelon at Different Storage Temperatures Using a Mass Spectrometry-based Electronic Nose (질량분석기 기반 전자코를 이용한 저장 온도별 머스크멜론의 향기 패턴 분석)

  • Youn, Aye-Ree;Noh, Bong-Soo;Kim, Byeong-Sam;Kwon, Ki-Hyun;Kim, Jong-Hoon;Kim, Sang-Hee;Choi, Duck-Joo;Cha, Hwan-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.419-425
    • /
    • 2011
  • Changes in the flavor of muskmelons stored at different temperatures were examined to judge aroma patterns during storage. A mass-spectrometry based electric nose was used to distinguish the subtle differences in the muskmelon's volatile compounds. The data were used for a discriminant function analysis (DFA), and then the partial least square algorithm was used for a quantitative analysis. Volatile components in the muskmelons increased with storage, and the first discriminant function score (DF1: $r^2$=99.88%, F=3072.5) moved from a positive position to a negative position as the storage period increased. The proper point of maturity was anticipated as the $28^{th}$ day at 0$^{\circ}C$, $21^{st}C$ day at 4 and 7$^{\circ}C$, and $14^{th}$ day at 10$^{\circ}C$. Also, using the DF1 score we could predict the general tendency (vitamin C, stem moisture, acidity) of the muskmelons. The electronic nose revealed that the major volatile compounds that changed during storage of the melons were ethyl ethyl acetate, butyl acetate, nonanol, dodecanoic acid, hexadecanoic acid and tricosane. The amount of volatile compounds detected increased during storage.

Volatile Flavor Components from Traditional Cultivars of Pear (Pyrus pyrifolia N.) (재래종 배의 휘발성 향기성분)

  • Park, Eun-Ryong;Choi, Jin-Ho;Kim, Kyong-Su
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.180-185
    • /
    • 2002
  • Volatile flavor components in three pear varieties (Pyrus pyriforia N.) of traditional cultivar, Bongri, Hwangsilri and Yongmokri, were collected by SDE method using the mixture of n-pentane and diethylether as an extract solvent and were identified by GC/MS. Among 97 compounds identified from all varieties, there were 72, 58 and 66 components in Bongri, Hwangsilri and Yongmokri, respectively. Ethyl acetate was the dominant constituent in all cultivars and also volatile profiles contained large quantity of ethanol and acetic acid. Butyl acetate identified as a main component in Bongri was not found in other pears, but in Hwangrilri and Yongmokri only 4 to 5 esters played important role in total volatile flavor composition. The volatile profiles of these three varieties were characterized by compounds in group of aldehydes, esters, alcohols, acids and ketones. As classified by functional group of separated and identified components, esters and alcohols in Bongri, alcohols in Hwangsilri, and esters in Yongmokri were roled as the title in composition of volatile flavor components. Although small amount, Yongmokri had the highest rate of volatile production at 6.552 mg/kg of pear while Hwangsilri produced the lowest at 4.175 mg/kg of pear.

Isolation and Identification of Antimicrobial Active Substances from Rhodiola sachlinensis (홍경천(Rhodiola sachlinensis)에서 항균성 물질의 분리 및 동정)

  • 심창주;이규희;정재홍;이상덕;김영호;오만진
    • Food Science and Preservation
    • /
    • v.11 no.1
    • /
    • pp.63-70
    • /
    • 2004
  • The antimicrobial substances from Rhodiola sachalinensis were extncted, isolated and identified. The highest level of antimicrobial activity and its yield were obtained in methanol extract. The minimum inhibition concentrations of the methanol extract were 500 $\mu\textrm{g}$mL on agar plate and 100 $\mu\textrm{g}$mL in broth media for four gram positive and four gram negative microbials. The methanol extract was fractionated by n-hexane, chloroform, ethyl ether, ethyl acetate, and butanol, orderly. The separate was developed on the TLC plate with different solvent system ratio of chloroform and methanol. Nine substances were isolated from chloroform and methanol mixture(9:1, v/v). Among them, three isolates showed antimicrobial activity. Three substances separated by HPLC were identified by GC/MS(EI) spectrum and $^1$H, /sup13/C-NMR spectrum. They were gallic acid, (-)-epicatechin and kaempferol. The antimicrobial activities of each substances were shown gallic acid, (-)-epicatechin, kaempferol orderly.

Removal of Methyl tert-Butyl Ether (MTBE) by Modified Fenton Process for in-situ Remediation (Methyl tert-Butyl Ether(MTBE)의 in-situ Remediation을 위한 Modified Fenton Process에 관한 연구)

  • Chung, Young-Wook;Seo, Seung-Won;Kim, Min-Kyoung;Lee, Jong-Yeol;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.2
    • /
    • pp.27-36
    • /
    • 2007
  • A recent study showed that MTBE can be degraded by Fenton's Reagent (FR). The treatment of MTBE with FR, however, has a definite limitation of extremely low pH requirement (optimum pH $3{\sim}4$) that makes the process impracticable under neutral pH condition on which the ferrous ion precipitate forming salt with hydroxyl anion, which result in the diminishment of the Fenton reaction and incompatible with biological treatment. Consequently, this process using only FR is not suitable for in-situ remediation of MTBE. In order to overcome this limitation, modified Fenton process using NTA, oxalate, and acetate as chelating reagents was introduced into this study. Modified Fenton reaction, available at near neutral pH, has been researched for the purpose of obtaining high performance of oxidation efficiency with stabilized ferrous or ferric ion by chelating agent. In the MTBE degradation experiment with modified Fenton reaction, it was observed that this reaction was influenced by some factors such as concentrations of ferric ion, hydrogen peroxide, and each chelating agent and pH. Six potential chelators including oxalate, succinate, acetate, citrate, NTA, and EDTA were tested to identify an appropriate chelator. Among them, oxalate, acetate, and NTA were selected based on their remediation efficiency and biodegradability of each chelator. Using NTA, the best result was obtained, showing more than 99.9% of MTBE degradation after 30 min at pH 7; the initial concentration of hydrogen peroxide, NTA, and ferric ion were 1470 mM, 6 mM, and 2 mM, respectively. Under the same experimental condition, the removal of MTBE using oxalate and acetate were 91.3% and 75.8%, respectively. Optimum concentration of iron ion were 3 mM using oxalate which showed the greatest removal efficiency. In case of acetate, $[MTBE]_0$ decreased gradually when concentration of iron ion increased above 5 mM. In this research, it was showed that modified Fenton reaction is proper for in-situ remediation of MTBE with great efficiency and the application of chelatimg agents, such as NTA, was able to make the ferric ion stable even at near neutral pH. In consequence, the outcomes of this study clearly showed that the modified Fenton process successfully coped with the limitation of the low pH requirement. Furthermore, the introduction of low molecular weight organic acids makes the process more available since these compounds have distinguishable biodegradability and it may be able to use natural iron mineral as catalyst for in situ remediation, so as to produce hydroxyl radical without the additional injection of ferric ion.

Comparative Evaluation of Antioxidant Activities of Ethanol Extracts and Their Solvent Fractions Obtained from Selected Miscellaneous Cereal Grains (잡곡 유래 에탄올 추출물 및 이의 유기용매 분획들의 항산화 활성 비교평가)

  • Park, Dong Hwa;Lee, Seung Tae;Jun, Do Youn;Lee, Ji Young;Woo, Mi Hee;Kim, Ki Young;Seo, Myung Chul;Ko, Jee Yeon;Woo, Koan Sik;Jung, Tae Wook;Kwak, Do Yeon;Nam, Min Hee;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.24 no.1
    • /
    • pp.26-38
    • /
    • 2014
  • To examine the antioxidant activities of 11n selected miscellaneous cereal grains (proso millet, yellow glutinous proso millet, hwanggeumchal sorghum, glutinous sorghum, white glutinous sorghum, yellow glutinous foxtail millet, nonglutinous foxtail millet, green glutinous foxtail millet, golden foxtail millet, barnyard millet, and adlay), the free radical-scavenging activities of 80% ethanol extracts of the individual grains were investigated using 1,1-diphenyl-2-picryl-hydrazl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) methods. The ethanol extracts of hwanggeumchal sorghum, glutinous sorghum, and barnyard millet grains exhibited more potent free radical-scavenging activities as compared to the other grains. When these three ethanol extracts were sequentially fractionated with n-hexane, methylene chloride, ethyl acetate, and n-butanol, the majority of the antioxidant activities were detected in the ethyl acetate and butanol fractions in which phenolic ingredients were abundant. The ethyl acetate and butanol fractions of hwanggeumchal sorghum and the ethyl acetate fraction of glutinous sorghum showed higher antioxidant activity than that of ${\alpha}$-tocopherol. Both ferric thiocyanate (FTC) and thiobarbituric acid (TBA) methods demonstrated that these organic solvent fractions could inhibit lipid peroxidation. The ethyl acetate fractions from hwanggeumchal sorghum, glutinous sorghum, and barnyard millet grains could suppress tertiary-butyl hydroperoxide (TBHP)-induced apoptotic events, including sub-G1 peaks, ${\Delta}{\Psi}m$ loss, activation of caspase-9 and caspase-3, and cleavage of PARP and lamin B, in human HL-60 cells. These results show that the grains of hwanggeumchal sorghum (Sorghum bicolor L. Moench cv. Hwanggeumchalsusu), glutinous sorghum (Sorghum bicolor L. Moench cv. Chalsusu), and barnyard millet (Echinochloa esculenta) possess efficient antioxidant activity, which could protect cells from oxidative stress-mediated cytotoxicity.

In vitro Antioxidant and Cytoprotective Activities of the Extract of Dangyuja (Citrus grandis Osbeck) Leaves

  • Kim, Yun-Jung;Cho, Moon-Jae;Kim Cho, So-Mi
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1086-1091
    • /
    • 2008
  • The antioxidant activities of the extracts of dangyuja (Citrus grandis Osbeck) leaves were evaluated. The highest phenolic content was obtained from the ethyl acetate fraction (EF) (202.1$\pm$0.8 mg GAE/g dried extract) and it exhibited the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. The cytoprotective effects of EF on oxidative damage induced by tert-butyl hydroperoxide (t-BHP) in a human hepatoma cell line, HepG2 cells, were investigated to understand the intracellular antioxidant mechanisms. Treatment of HepG2 cells with EF prior to oxidative stress was found to inhibit reactive oxygen species (ROS) generation, lipid peroxidation, and DNA damage in a dose-dependent manner. Gas chromatography-mass spectrometry (GC-MS) studies on EF resulted in tentative identification of 19 compounds representing 94.3% of the total content. Taken together, these results demonstrated that EF has excellent antioxidant activities and thus dangyuja leaves have great potential as a source for natural antioxidant which can be applied in food products.

The Effect of Butyl hydroxyanisole (BHA) on the Lead Poisoning in Rats (랫트의 선중독에 대한 Butyl hydroxyanisole(BHA)의 영향에 관한 연구)

  • 조필형;안영근;김주영
    • Environmental Analysis Health and Toxicology
    • /
    • v.6 no.1_2
    • /
    • pp.7-23
    • /
    • 1991
  • The present study was undertaken to examine the effect of butylhydroxyanisole (BHA) on the lead poisoning in Wister female rats. All experimental rats except normal group were fed with diets formulated by adding BHA in a range of 0.1% to 3.2% and aqueous solution of 1% lead acetate ad libitum through the experimental period. The results obtained are summarized as follows: 1) Lead sedimentation in kidney tissue was decreased with increasing experimental period and BHA level of lead plus BHA-treated groups in comparison with that of lead-treated control group. 2) The weights of lung, spleen and left/right (L/R) kidney were significantly decreased in comparison with those of lead-treated control group after 2 weeks of experimental period, but no difference was shown with those of normal group. 3) The weights of lung, spleen and L/R kidney were increased in lead-treated control group as compared with normal group after 2 weeks of experimental period, but no difference was shown with increasing experimental period. 4) Water intake was remarkably decreased in lead-treated control group as compared with normal group, but water intake by increasing BHA level of lead plus BHA-treated groups showed no significant difference from that of normal group. 5) These results suggest that BHA is effective for reducing the toxic effect of lead in rats.

  • PDF

Chemical Composition of Painting Materials used in Some Korean Shipyards (조선업의 도장 작업시 취급하는 도료중 유해물질 성분에 관한 연구)

  • Shin, Yong Chul;Yi, Gwang Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.1
    • /
    • pp.156-172
    • /
    • 1999
  • Potential chemical hazards encountered in painting operation of four shipyards and a ship-repair shop were investigated through the material safety data sheets (MSDS). Material safety data sheets (MSDS) for 307 paints, 50 thinners and 34 binders were collected and reviewed. It was shown that various organic solvents such as aromatic hydrocarbons, aliphatic hydrocarbons, ketones, alcohols, glycols, glycol ether acetates and esters were contained in painting materials. Of these solvents, xylene was found in the largest number of painting materials. sixty percent of the thinners contained xylene in the contents of 20-100%. Other most frequently found solvents were 1-methoxypropanol, 1-methoxypropyl acetate, n-butanol, methyl isobutyl ketone, toluene, isopropanol, and n-butyl acetate, etc. Glycol ethers such as 2-methoxyethanol (2-ME), 2-methoxyethyl acetate (2-MEA), 2-ethoxyethanol (2-EE), 2-ethoxyethyl acetate (2-EEA) and 2-butoxyethanol (2-BA) were regarded as having the potential to cause adverse reproductive effects, embryotoxic effect and hematotoxic effects, and were found in some epoxy panting materials. Coal tar pitch was included in some paints(13%) where polynuclear aromatic hydrocarbons (PAHs) could be contaminated. Inorganic pigments such as lead chromate and zinc potassium chromate were found in some paints (8%). The epoxy resin based paints, which may contain isocyanates such as toluene diisocyanates and hexamethylene diisocyanates causing potential sensitization and asthma to upper respiratory organ, were mostly used in the shipyards. The constituents in the MSDS were significantly different from the results analyzed using gas chromatography/mass detector: minor constituents or impurities were omitted in many MSDS. In conclusion, xylene was the most frequent organic solvent in painting materials, and glycol ethers, including 2-ME, 2-MEA, 2-EE, 2-EEA and 2-BA, were found some products. Also, painting workers may be exposed to PAHs, lead, chromate, isocyanates, organic tin and other various chemicals. The compositions of chemicals in painting materials were variable significantly, and the hazards were changed. These facts should be considered in environmental monitoring and control of the hazards.

  • PDF

Estimation and Analysis of VOCs Emissions from Painting and Printing Facilities in Industrial Complexes of Gwangju (광주지역 산업단지 도장·인쇄시설의 휘발성유기화합물 배출 특성 평가)

  • Kim, Seung-Ho;Seo, Dong-Ju;Kim, Ha-Ram;Park, Jin-Hwan;Lee, Ki-Won;Bae, Seok-Jin;Song, Hyeong-Myeong
    • Journal of Environmental Science International
    • /
    • v.29 no.5
    • /
    • pp.479-494
    • /
    • 2020
  • This study analyses the characteristics of volatile organic compounds (VOCs) emissions from the painting and printing facilities, as well as ambient VOCs at industrial complexes in Gwangju. The major components of VOCs emissions from painting facilities were toluene, acetone, 2-butanone, ethyl acetate, ethyl benzene, o-xylene and m,p-xylene. The printing facilities mostly emitted ethyl acetate, 2-butanone, acetone and toluene. Aromatics (49.9%) and oxygenated VOCs (43.6%) were dominant in painting facilities, while oxygenated VOCs (92.7%) were the largest group in printing facilities. The total hydrocarbon concentration (THC) in printing facilities was approximately six times higher than in the painting facilities. The painting and printing facilities use many solvents. Their THC concentrations differed considerably depending on the type of prevention facilities. To reduce THC, it is necessary to improve the prevention facilities and operating conditions. The dominant species of ambient VOCs in industrial complexes were investigated with toluene, ethyl acetate, 2-butanone, ethyl benzene, m,p-xylene, butyl acetate, o-xylene, hexane and acetone. Factor analysis of ambient VOCs showed that the main sources of the VOCs were organic solvents used in painting, coating, and printing, as well as automobile emissions.

Cosmetic Application Using Skin Whitening and Anti-microbial effects of Ethyl Acetate and n-Butanol Fractions from Eruca sativa (Eruca sativa 에칠아세테이트와 부탄올 분획물의 미백 및 항균효과를 이용한 화장품 응용연구)

  • Park, Jihye;Lee, Kwang-ho;Kim, Bora
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.651-661
    • /
    • 2021
  • Eruca sativa, called arugula, is a perennial plant in the Brassicaceae family, an edible plant commonly used in Italian cuisine. To study as a cosmetic material application E. sativa was extracted with 70% ethanol (ES). Then ES was fractionated using n-hexane, chloroform, ethyl acetate, n-butyl alcohol and water (EHex, EEA, ECHCl3, EBuOH and EDW). EEA showed mushroom tyrosinase inhibitory activity. ES, EEA and EBuOH showed inhibition of tyrosinase activity. As a result, ES is expected to have skin whitening efficacy. ES was applied to 0.05, 0.1% the toner and emulsion formulation to test the stability. The anti-microbial activity of eight bacteria and fungi including Staphylococcus aureus and Propionibacterium acnes which cause dermatitis and acne was evaluated. EEA showed effects in all of microorganisms. The toner and emulsion containing ES with 0.05, 0.1% were passed in the challenge test. At -20, 4, 25, 55 ℃ and daylight, there was no significant change on pH, viscosity for 4 months. However, emulsions had phase separation phenomenon at 55 ℃, so the base formulation needs improvement. In addition, through the skin penetration test, EEA penetrated 0.058% in 6 hr, predicting the clinical efficacy. This means that E. sativa can contribute whitening agent and the synergistic effect of preservatives.