• Title/Summary/Keyword: Butt joint welding

Search Result 179, Processing Time 0.029 seconds

Experimental Study on Hardness and Wear Characteristics of Welded Rails (레일 용접부의 경도와 마멸특성에 관한 실험적 연구)

  • 김청균;황준태;나성훈;민경주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.234-243
    • /
    • 1998
  • In this paper, thermite and gas pressure weldings have been used to join rails in-track and analyzed as functions of hardness and wear characteristics. The wear rate of thermite welded rail is low compared with that of gas pressure welded rail, which is tested in a pin-on-disk wear tester. The hardness of thermite welded materials is relatively high and narrow distributed between three zones, welded part, thermally affected zone, and a base matrix. Wear of a welded rail may be a major factor in railroad maintenance costs and failures at the rail-rail butt joint.

  • PDF

Fatigue Life Evaluation Model for Welded feints Based on Nominal Stress and Residual Stress Relaxation (잔류응력 완화를 고려한 공칭응력 기반 용접재의 피로수명 평가 모델)

  • 구병춘;양승용;정흥채;최성규
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.249-251
    • /
    • 2004
  • According to our fatigue tests carried out at 20 ㎐, R=0.1 on transversely butt-welded joints, fatigue strengths of as-welded specimens, that is, specimens having residual stress are higher than those of annealed specimens in short hie range, but vice verse in long life range. This behavior seems to be concerned mainly with residual stress relaxation by applied loading. After analyzing the welding process, we conducted finite element analysis to quantify the degree of residual stress relaxation. By taking into account residual stress relaxation, modified Goodman diagram, and nominal stress, we evaluated the fatigue life of the welded joint from the S-N curve for the parent material. The estimated results are in a good agreement with the experimental results.

  • PDF

Interface Analysis and Mechanical Properties of Friction Stir Welded Dissimilar joints between Stainless steel and AI alloy (마찰교반접합한 알루미늄 합금과 스테인리스 강 이종접합부 계면 조직 및 접합부 강도)

  • Lee, Won-Bae;Lee, Chang-Yong;Yeon, Yun-Mo;Jeong, Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.189-191
    • /
    • 2005
  • Dissimilar joining of AI 6013-T4 alloys and austenite stainless steel was carried out using friction stir welding technique. Microstructures near the weld zone and mechanical properties of the joint have been investigated. Microstructures in the stainless steel side and AI alloy were depended on the thermo-mechanical condition which they received. TEM micrographs revealed that the interface region was composed of the mixed layers of elongated stainless steel and ultra-fine grained AI alloy and intermetallic compound layer which was identified as the $Al_{4}Fe$ with hexagonal close packed structure. Mechanical properties were lower than those of 6013 AI alloy base metal, because tool inserting location was deviated to AI alloy from the butt line, which resulted in the lack of the stirring.

  • PDF

Effect of Forced Cooling condition along with Welding on Welding Angular Distortion (용접 후면 강제냉각조건이 용접각변형에 미치는 영향)

  • Park, Jeong-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2021-2026
    • /
    • 2013
  • In this study, the effect on the welding angle distortion was reviewed by carrying out a thermal elastic-plastic analysis while changing the cooling condition(width, length, and distance from weld torch to cooling torch) the back of the welding zone for the butt weld joint. The review results revealed that maximum 57% of reduction in the angle distortion was achieved when the distance between weld torch and cooling tip of 25mm, cooling length of 80mm, and cooling width of 30mm were maintained.

AUTOMATIC MULTITORCH WELDING SYSTEM WITH HIGH SPEED

  • Moon, H.S;Kim, J.S.;Jung, M.Y.;Kweon, H.J.;Kim, H.S.;Youn, J.G.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.320-323
    • /
    • 2002
  • This paper presents a new generation of system for pressure vessel and shipbuilding. Typical pressure vessel and ship building weld joint preparations are either traditional V, butt, fillet grooves or have narrow or semi narrow gap profiles. The fillet and U groove are prevalently used in heavy industries and shipbuilding to melt and join the parts. Since the wall thickness can be up to 6" or greater, welds must be made in many layers, each layer containing several passes. However, the welding time for the conventional processes such as SAW(Submerged Arc Welding) and FCAW(Flux Cored Arc Welding) can be many hours. Although SAW and FCAW are normally a mechanized process, pressure vessel and ship structures welding up to now have usually been controlled by a full time operator. The operator has typically been responsible for positioning each individual weld run, for setting weld process parameters, for maintaining flux and wire levels, for removing slag and so on. The aim of the system is to develop a high speed welding system with multitorch for increasing the production speed on the line and to remove the need for the operator so that the system can run automatically for the complete multi-torch multi-layer weld. To achieve this, a laser vision sensor, a rotating torch and an image processing algorithm have been made. Also, the multitorch welding system can be applicable for the fine grained steel because of the high welding speed and lower heat input compare to a conventional welding process.

  • PDF

Recent Trends of Friction Stir Welding of Titanium (타이타늄 소재 마찰교반용접 기술 동향)

  • Chun, Chang-Keun;Kim, Sung-Wook;Kim, Heung-Joo;Chang, Woong-Seong;Noh, Joong-Suk
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.16-20
    • /
    • 2013
  • Titanium and its alloys have been widely using in the various field of industry application due to high corrosion resistant properties and mechanical properties. Titanium is highly reactive in the high temperature state and the formation of titanium oxide and porosities in the nuggets of fusion welding will results in the degradation of the mechanical properties. For this reason the studies of friction stir welding for titanium have been investigated recently. The FSW zones of titanium were classified by the weld nugget (WN), the linear transition boundary (TB) and the heat affected zone (HAZ). The WN along with titanium parent was characterized by the presence of twins and dislocations. The average grain size and hardness of WN has been changed according to heat input. The grain refinement resulted from the FSW increased the hardness in the stir zone. Sound dissimilar joints between SUS 304 and CP-Ti were achieved using an advancing speed of 50 mm/min and rotation speeds in the range of 700-1100 rpm. Aluminum 1060 and titanium alloy Ti-6Al-4V plates were lap joined by friction stir welding, hence the ultimate tensile shear strength of joint reached 100% of Al 1060. Mg alloy and Ti were successfully butt joined by inserting a probe into the Mg alloy plate with slightly offsetting. But Ti-Al intermetallic compound layers formed at the interface of these joints.

A study on the effect to yongrak phenomenon of submerged arc welding depending on the plasma cutting surface characteristics (플라즈마 절단면 특성이 서브머지드 아크용접 용락 현상에 미치는 영향에 관한 연구)

  • Kim, Jeongtae;Jeong, Hyomin;Ji, Myoungkuk;Chung, Hanshik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.589-595
    • /
    • 2013
  • This paper was to study the effect to Yongrak phenomenon of I groove submerged arc welding depending on the plasma cutting surface characteristics, and how to reduce the causes and characteristics Yongrak phenomenon. Shipbuilding and marine structures is designed to use the thick plates and welded by high current to obtain deep penetration. Yongrak phenomenon has been occurred frequently depending on the quality of cutting surface and it makes degrade of the welding quality and modification of the welding. As a result, it was confirmed that I Groove plasma cutting characteristics get bevel form of 2 to 4 degrees to one side direction from the vertical position with Yongrak phenomenon. This is the main reason of Yongrak phenomenon in butt joint welding and 4 degree reverse bevel on the upper surface of base metal by submerged arc welding brought the effect of significant reduction of Yongrak phenomenon.

The Weldability of a Thin Friction Stir Welded Plate of Al5052-H32 using High Frequency Spindle (고주파스핀들을 이용한 박판 알루미늄합금소재(Al5052-H32)의 마찰교반접합에 의한 용접성 평가)

  • Joo, Young-Hwan;Park, Young-Chan;Lee, Yong-Moon;Kim, Kwang-Ho;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.90-95
    • /
    • 2017
  • Recently, smaller and lighter products have become of interest in industry applications that increasingly demand thin plate joints of thickness 1.0 mm or less using friction stir welding. In this study, high frequency spindles that run at 3,500-6,500 rpm are introduced for thin friction stir-welded plates. Weldability tests are performed for the butt-joint method of Al5052-H32 alloy of 1.0 mm thickness under 3,500-6,500 rpm spindle revolution with 250-400 mm/min feed speed. An optical microscope was used to analyze the bid structure of the welded zone and stir zone. The tensile-strength and hardness of the welded zone were then measured.

Fatigue Life Evaluation Model of Welded Joints With Residual Stress (잔류응력을 고려한 용접 이음부의 피로수명 평가 모델)

  • Goo, Byeong-Choon;Yang, Sung-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1328-1336
    • /
    • 2004
  • According to our fatigue tests carried out at 20 Hz, R=0.1 on transversely butt-welded joints, fatigue strengths of as-welded specimens, that is, specimens having residual stress are higher than those of annealed specimens in short life range, but vice verse in long life range. This behavior seems to be concerned mainly with residual stress relaxation by applied loading. After analyzing the welding process, we conducted finite element analysis to quantify the degree of residual stress relaxation. By taking into account residual stress relaxation, modified Goodman diagram, and nominal stress, we evaluated the fatigue life of the welded joint from the S-N curve for the parent material. The estimated results are in a good agreement with the experimental results.

Fatigue Life Evaluation of Welded Joints With Residual Stress (잔류응력을 고려한 용접 이음부의 피로수명 평가 모델)

  • Goo, B.C.;Yang, S.Y.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.108-113
    • /
    • 2004
  • According to our fatigue tests carried out at 20 Hz, R=0.1 on transversely butt~welded joints, fatigue strengths of as-welded specimens, that is, specimens having residual stress are higher than those of annealed specimens in short life range, but vice verse in long life range. This behavior seems to be concerned mainly with residual stress relaxation by applied loading. After analyzing the welding process, we conducted finite element analysis to quantify the degree of residual stress relaxation. By taking into account residual stress relaxation, modified Goodman diagram, and nominal stress, we evaluated the fatigue life of the welded joint from the S-N curve for the parent material. The estimated results are in a good agreement with the experimental results.

  • PDF