• Title/Summary/Keyword: Butt Weld

Search Result 264, Processing Time 0.022 seconds

A Study on Mechanical Stress Relleving in a Butt-Welded Pipe (파이프 용접에서 기계적 잔류응력 이완법에 관한 연구)

  • 양영수
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.75-81
    • /
    • 1996
  • The heat transfer and thermal stress-distribution were numerically determined by using the finite element method for a butt-welded pipe. A mechanical stress relieving(MSR) treatment which has been frequently used in the fabrication of pressure vessels instead of the post weld heat treatment (PWHT) was also simulated to investigate its effect of reducing the residual stress in the welded zone by a mechanical loading.

  • PDF

A Study on the Influence Residual Stresses on Fatigue Crack Growth Behaviors in the Butt Welded Plate (Butt 용접판재에서의 피로균열성장거동에 미치는 잔류응력의 영향에 관한 연구)

  • 차용훈;정종안;채경수;김하식
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.2
    • /
    • pp.64-71
    • /
    • 1993
  • In this study, the purpose is to investigate the influence of initial residual stresses on the fatigue crack growth behaviors after the distribution of initial residual stresses Is measured when the crack is growing from the compressive residual stresses field to the tensile residual stress field. Also, the Influence of the variation of residual stress distribution on the fatigue crack growth behaviors at the crack tip is studied when the initial crack li applied on base metal, weld metal and HAZ respectively.

  • PDF

A Study on Laser Welding Characteristics of 1500MPa Grade Ultra High Strength Steel for Automotive Application (자동차용 1500MPa급 초고강도강의 레이저 용접 특성에 관한 연구)

  • Choi, Jin-Kang;Kim, Jong-Gon;Shin, Seung-Min;Kim, Cheol-Hee;Rhee, Se-Hun
    • Laser Solutions
    • /
    • v.13 no.3
    • /
    • pp.19-26
    • /
    • 2010
  • In this study, fundamental experiment was conducted with various strength of UHSS (Ultra High Strength Steel) by $CO_2$ laser. And then, butt and lap joint laser welding with boron alloyed steel and Al-Si coated boron alloy steel have been done by changing laser beam feature, existence of gap and existence of coating layer to know welding characteristics of those materials. As a result, in case of fundamental experiment with various strength steel, hardening was found in the weld metal of all tested materials and softening was found at the heat affected zone of SGAFC 1180. In case of laser butt welding of UHSS, mechanical properties was improved by using small laser beam diameter and Al-Si coating layer caused fracture of weld metal. In case of laser lap welding of UHSS, Al-Si coating layer resulted in formation of intermetallic compound at the fusion boundary where fracture occurred. Al-Si coating layer caused lowering mechanical properties of weld metal.

  • PDF

Analysis of Electro-Magnetic Force Acting on Arc Column in Butt-Joint Welding of Mild Steel Plate (연강 판재의 맞대기 용접에서 아크에 작용하는 자기력의 해석)

  • Bae Kang-Yul
    • Journal of Welding and Joining
    • /
    • v.23 no.4
    • /
    • pp.73-80
    • /
    • 2005
  • Arc blow being occurred by Electro-Magnetic force(EMF) during the electric arc welding prevents the formation of a sound weldment. In this study, the effects of arc position, groove size, tack weld and base plate on the EMF in a butt-joint welding of mild steel plate are analyzed by a computer simulation based on the finite element method. The EMF can be numerically identified to be caused by a difference of the magnetic flux-density between ahead of and behind the arc in case that the workpiece locates asymmetrically around the uc. When there exists an air gap of groove ahead of the arc in the welding direction, the similar magnetic force has been producted regardless of the arc position and the gap size. The tack weld alleviates the magnetic force to about one fourth at the finish end of the workpiece. The magnetic force can be also significantly reduced with the base plate to about one fifth at the start end of the workpiece containing a tack weld.

Investigation into Variations of Welding Residual Stresses and Redistribution Behaviors for Different Repair Welding Widths (보수용접부 폭에 따른 용접잔류응력의 변화 및 재분배 거동 평가)

  • Park, Chi-Yong;Lee, Hwee-Sueng;Huh, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.177-184
    • /
    • 2014
  • In this study, we investigated the variations in welding residual stresses in dissimilar metal butt weld due to width of repair welding and re-distribution behaviors resulting from similar metal welding (SMW) and mechanical loading. To this end, detailed two-dimensional axi-symmetric finite element (FE) analyses were performed considering five different repair welding widths. Based on the FE results, we first evaluated the welding residual stress distributions in repair welding. We then investigated the re-distribution behaviors of the residual stresses due to SMW and mechanical loads. It is revealed that large tensile welding residual stresses take place in the inner surface and that its distribution is affected, provided repair welding width is larger than certain value. The welding residual stresses resulting from repair welding are remarkably reduced due to SMW and mechanical loading, regardless of the width of the repair welding.

The effect of ultrasonic nano crystal surface modification for mitigation of the residual stress after weld inlay on the alloy 82/182 dissimilar metal welds of reactor vessel in/outlet nozzles (원자로 입출구 노즐 Alloy 82/182 이종금속 용접부 Weld Inlay 적용 후 초음파나노표면개질이 잔류응력 완화에 미치는 영향)

  • Cho, Hong Seok;Park, Ik Keun;Jung, Kwang Woon
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.40-46
    • /
    • 2015
  • This study was performed to investigate the effect of ultrasonic nano crystal surface modification (UNSM) on residual stress mitigation after Weld Inlay repair for butt dissimilar metal weld with Alloy 82/182 in reactor vessel In/Outlet nozzle. As-welded and Weld Inlay specimens were made in accordance with design standard of ASME Code Case N-766, and two planes of their weld specimens were peened by the optimum UNSM process condition. Peening characteristics for weld specimens after UNSM treatment were evaluated by surface roughness and Vickers hardness test. And, residual stress for weld specimens developed from before and after UNSM treatment was measured and evaluated by instrumented indentation technique. Consequently, it was revealed that the mitigation of residual stress in weld metal after Weld Inlay repair of reactor vessel In/Outlet nozzle could be possible through UNSM treatment.

TENSILE STRENGTH OF LASER WELDED-TITANIUM AND GOLD ALLOYS (티타늄과 금합금의 레이저 용접부의 인장강도)

  • Song, Yun-Gwan;Ha, Il-Soo;Song, Kwang-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.2
    • /
    • pp.200-213
    • /
    • 2000
  • Lasers have given dentistry a new rapid, economic, and accurate technique for metal joining. Although laser welding has been recommended as an accurate technique, there are some limitations with this technique. For example, the two joining surfaces must have a tight-fitting contact, which may be difficult to achieve in some situations. The tensile samples used for this study were made from a custom-made pure titanium and type III gold alloy plates. 27 of 33 specimens were sectioned perpendicular to their long axis with a carborundum disk and water coolant. Six specimens remained and served as the control group. A group of 6 specimens was posed as butt joints in custom parallel positioning device with a feeler gauge at each of three gaps : 0.00, 0.25. and 0.50mm. All specimens were then machined to produce a uniform cross-sectional dimension, none of the specimens was subjected to any subsequent form of heat treatment. Scanning electron microscopy was performed on representative tested specimens at fractured surfaces in both the parent metal and the weld. Vickers hardness was measured at the center of the welds with a micropenetrometer using a force of 300gm for 15 seconds. Measurement was made at approximately $200{\mu}m\;and\;500{\mu}m$ deep from each surface. One-way analysis of variance (ANOVA) and Scheffe's test was calculated to detect differences between groups. The purpose of this study is to compare the strength and properties of the joint achieved at various butt Joint gaps by the laser welding of type III gold alloy and pure titanium tensile specimens in an argon atmosphere. The results of this study were as follows : 1. When indexing and welding pure titanium, there was no decrease in ultimate tensile strength as compared with the unsectioned alloys for indexing gaps of 0.00 to 0.50mm, although with increasing gap size may come increased distortion (p>0.05). 2. When indexing and welding type III gold alloy, there were significant differences in ultimate tensile strength among groups with weld gaps of 0.00mm, 0.25 and 0.50mm, and the control group. Group with butt contact without weld gap demonstrated a significant higher ultimate tensile strength than groups with weld gaps of 0.25 and 0.50mm (p<0.05). 3. When indexing and welding the different metal combination of type III gold alloy and pure titanium, there were significant differences in ultimate tensile strength between groups with weld gaps of 0.00, 0.25, and 0.50mm. However, the mechanical properties of the welded joint would become too brittle to be acceptable clinically (p<0.05). 4. The presence of large pores in the laser welded joint appears to be the most important factor in controlling the tensile strength of the weld in both pure titanium and type III gold alloy.

  • PDF

A Study on Arc Sensor for Weld Seam Tracking by Using Fuzzy Control (퍼지제어를 이용한 용접선 추적용 아크센서에 관한 연구)

  • 조시훈;김재웅
    • Journal of Welding and Joining
    • /
    • v.13 no.1
    • /
    • pp.156-166
    • /
    • 1995
  • Experimental models which are able to determine the deviation between weld line and weaving center by measuring the weld current during welding were proposed for the gas metal arc welding process. The models were used for developing a weld seam tracking system which controls the weaving speed of a welding torch. However, it was revealed that the tracking result of the system is affected by the welding conditions. Thus an arc sensor system was developed by using fuzzy control approach for overcoming the difficulty of modelling the nonlinear process. The rule base and parameters of the fuzzy control system were determined on the basis of the results of experiments. This fuzzy control system has shown the successful tracking capability for the wide operating range of welding conditions.

  • PDF

Characteristics of Fatigue Failure according to Thickness of Material and Number of Passes in Cruciform Fillet Weld Zone (십자형 필릿 용접부에서 재료 두께 및 용접 층수에 따른 피로파괴 특성)

  • Lee, Yong-Bok
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.45-50
    • /
    • 2010
  • Most of joining processes for machine and steel structure are performed by butt and fillet welding. The mechanical properties and fatigue strength of their welding zone can be effected largely by the differential of generated heat and changes of grain size according to thickness of material and number of passes in welding process. In this study, it was investigated about characteristics of fatigue failure according to thickness of material and number of passes in cruciform fillet weld zone as the basic study for safe and economic design of welding structures. Fracture modes in cruciform fillet weld zone are classified into toe failure and root failure according to non-penetrated depth. It can be accomplished economic design of welding structures considering fatigue strength when the penetrated depth in fillet weld zone is controled properly.

A Study on the Accuracy Control of Panel Blocks (평블록의 용접변형제어에 관한 연구)

  • 이주성
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.35-40
    • /
    • 2004
  • This paper is concerned with the simulator's ability to estimate deformation due to welding of panel blocks. An efficient computer program system has been developed which can be applied both to estimation of weld-induced deformation, under the given welding conditions, and to reflection of effect when methods for deformation control of are applied. This paper briefly describes the background of the present simulator and shows some results applying the simulator to the estimation of weld-induced deformation. In addition, the results when methods for deformation control are applied are also included.